File size: 1,323 Bytes
3f7ec48 3086409 3f7ec48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
This model was developed by finetuning the [DistilBERT Nepali Model](https://huggingface.co/Sakonii/distilbert-base-nepali). The model classifies the Nepali tweets related to COVID19 into three categories: neutral, positive and negative.
- **Developed by:** Jeevan
- **Model type:** DistilBERT Nepali
- **Language(s) (NLP):** Nepali
- **Finetuned from model [optional]:** [DistilBERT Nepali Model](https://huggingface.co/Sakonii/distilbert-base-nepali)
## Training Details
### Training Data
The dataset used for finetuning this model can be found at [NepCOV19Tweets](https://www.kaggle.com/datasets/mathew11111/nepcov19tweets) which contains Nepali tweets related to COVID-19.
### Training HyperParameters
* Batch size: 16
* Learning Rate: 0.0001
* Optimizer: AdamW
* Epochs: 10
## Evaluation
* Training loss: 0.2414
* Precision: 0.73
* Recall: 0.73
* F1 Score (Weighted): 0.73
## Labels
* Neutral: 0
* Positive: 1
* Negative: 2
## USAGE
```python
from transformers import pipeline
pipe = pipeline("text-classification", model="xap/Sentiment_Analysis_NepaliCovidTweets")
pipe("अमेरिकामा कोभिड बाट एकै दिन चार हजारभन्दा बढीको मृत्यु")
```
|