File size: 1,323 Bytes
3f7ec48
 
 
 
 
 
 
3086409
3f7ec48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
library_name: transformers
tags: []
---

# Model Card for Model ID

This model was developed by finetuning the [DistilBERT Nepali Model](https://huggingface.co/Sakonii/distilbert-base-nepali). The model classifies the Nepali tweets related to COVID19 into three categories: neutral, positive and negative.



- **Developed by:** Jeevan
- **Model type:** DistilBERT Nepali
- **Language(s) (NLP):** Nepali
- **Finetuned from model [optional]:** [DistilBERT Nepali Model](https://huggingface.co/Sakonii/distilbert-base-nepali)



## Training Details

### Training Data

The dataset used for finetuning this model can be found at [NepCOV19Tweets](https://www.kaggle.com/datasets/mathew11111/nepcov19tweets) which contains Nepali tweets related to COVID-19.

### Training HyperParameters 

* Batch size: 16
* Learning Rate: 0.0001
* Optimizer: AdamW
* Epochs: 10



## Evaluation

* Training loss: 0.2414
* Precision: 0.73
* Recall: 0.73
* F1 Score (Weighted): 0.73

## Labels

* Neutral: 0
* Positive: 1
* Negative: 2


## USAGE

```python
from transformers import pipeline

pipe = pipeline("text-classification", model="xap/Sentiment_Analysis_NepaliCovidTweets")
pipe("अमेरिकामा कोभिड बाट एकै दिन चार हजारभन्दा बढीको मृत्यु")
```