|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: cmotions/NL_restaurant_reviews |
|
metrics: |
|
- accuracy |
|
- recall |
|
- precision |
|
- f1 |
|
widget: |
|
- text: Wat een geweldige ervaring. Wij gebruikte de lunch bij de Librije. 10 gangen |
|
met in overleg hierbij gekozen wijnen. Alles klopt. De aandacht, de timing, prachtige |
|
gerechtjes. En wat een smaaksensaties! Bediening met humor. Altijd daar wanneer |
|
je ze nodig hebt, maar nooit overdreven aanwezig. |
|
example_title: Michelin restaurant |
|
- text: Mooie locatie, aardige medewerkers. Maaltijdsalade helaas teleurstellend, |
|
zeer kleine portie voor 13,80. Jammer. |
|
example_title: Mooie locatie, matig eten |
|
base_model: GroNLP/bert-base-dutch-cased |
|
model-index: |
|
- name: NL_BERT_michelin_finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NL_BERT_michelin_finetuned |
|
|
|
This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on a [Dutch restaurant reviews dataset](https://huggingface.co/datasets/cmotions/NL_restaurant_reviews). Provide Dutch review text to the API on the right and receive a score that indicates whether this restaurant is eligible for a Michelin star ;) |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0637 |
|
- Accuracy: 0.9836 |
|
- Recall: 0.5486 |
|
- Precision: 0.7914 |
|
- F1: 0.6480 |
|
- Mse: 0.0164 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| |
|
| 0.1043 | 1.0 | 3647 | 0.0961 | 0.9792 | 0.3566 | 0.7606 | 0.4856 | 0.0208 | |
|
| 0.0799 | 2.0 | 7294 | 0.0797 | 0.9803 | 0.4364 | 0.7415 | 0.5495 | 0.0197 | |
|
| 0.0589 | 3.0 | 10941 | 0.0637 | 0.9836 | 0.5486 | 0.7914 | 0.6480 | 0.0164 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|