metadata
tags:
- generated_from_trainer
datasets: cmotions/NL_restaurant_reviews
metrics:
- accuracy
- recall
- precision
- f1
widget:
- text: >-
Wat een geweldige ervaring. Wij gebruikte de lunch bij de Librije. 10
gangen met in overleg hierbij gekozen wijnen. Alles klopt. De aandacht, de
timing, prachtige gerechtjes. En wat een smaaksensaties! Bediening met
humor. Altijd daar wanneer je ze nodig hebt, maar nooit overdreven
aanwezig.
example_title: Michelin restaurant
- text: >-
Mooie locatie, aardige medewerkers. Maaltijdsalade helaas teleurstellend,
zeer kleine portie voor 13,80. Jammer.
example_title: Mooie locatie, matig eten
base_model: GroNLP/bert-base-dutch-cased
model-index:
- name: NL_BERT_michelin_finetuned
results: []
NL_BERT_michelin_finetuned
This model is a fine-tuned version of GroNLP/bert-base-dutch-cased on a Dutch restaurant reviews dataset. Provide Dutch review text to the API on the right and receive a score that indicates whether this restaurant is eligible for a Michelin star ;) It achieves the following results on the evaluation set:
- Loss: 0.0637
- Accuracy: 0.9836
- Recall: 0.5486
- Precision: 0.7914
- F1: 0.6480
- Mse: 0.0164
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse |
---|---|---|---|---|---|---|---|---|
0.1043 | 1.0 | 3647 | 0.0961 | 0.9792 | 0.3566 | 0.7606 | 0.4856 | 0.0208 |
0.0799 | 2.0 | 7294 | 0.0797 | 0.9803 | 0.4364 | 0.7415 | 0.5495 | 0.0197 |
0.0589 | 3.0 | 10941 | 0.0637 | 0.9836 | 0.5486 | 0.7914 | 0.6480 | 0.0164 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1