File size: 6,928 Bytes
662e23e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import to_2tuple

class PatchEmbed_new(nn.Module):
    """ Flexible Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, stride=16):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)
        
        self.img_size = img_size
        self.patch_size = patch_size

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride) # with overlapped patches

    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)
        return x


def get_2d_sincos_pos_embed_flexible(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size[0], dtype=np.float32)
    grid_w = np.arange(grid_size[1], dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size[0], grid_size[1]])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


class FixedPositionalEncoder(nn.Module):
    def __init__(self, pos_embed):
        super().__init__()
        self.positions = pos_embed

    def forward(self, x, padding_mask): 
        return self.positions


class AltBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        mlp_drop=0.0,
        post_mlp_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        layer_norm_first=True,
        ffn_targets=False,
        cosine_attention=False,
    ):
        super().__init__()

        self.layer_norm_first = layer_norm_first
        self.ffn_targets = ffn_targets

        from timm.models.vision_transformer import DropPath, Mlp

        self.norm1 = norm_layer(dim)
        self.attn = AltAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
            cosine_attention=cosine_attention,
        )

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=mlp_drop,
        )
        self.post_mlp_dropout = nn.Dropout(post_mlp_drop, inplace=False)

    def forward(self, x, padding_mask=None, alibi_bias=None):
        if self.layer_norm_first:
            x = x + self.drop_path(self.attn(self.norm1(x), padding_mask, alibi_bias))
            r = x = self.mlp(self.norm2(x))
            t = x
            x = r + self.drop_path(self.post_mlp_dropout(x))
            if not self.ffn_targets:
                t = x
        else:
            x = x + self.drop_path(self.attn(x, padding_mask, alibi_bias))
            r = x = self.norm1(x)
            x = self.mlp(x)
            t = x
            x = self.norm2(r + self.drop_path(self.post_mlp_dropout(x)))
            if not self.ffn_targets:
                t = x

        return x, t


class AltAttention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
        cosine_attention=False,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.cosine_attention = cosine_attention

        if cosine_attention:
            self.logit_scale = nn.Parameter(
                torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
            )

    def forward(self, x, padding_mask=None, alibi_bias=None):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)  # qkv x B x H x L x D
        )
        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )  # make torchscript happy (cannot use tensor as tuple)

        dtype = q.dtype

        if self.cosine_attention:
            # cosine attention
            attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
            logit_scale = torch.clamp(
                self.logit_scale, max=torch.log(torch.tensor(1.0 / 0.01))
            ).exp()
            attn = attn * logit_scale
        else:
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)

        if alibi_bias is not None:
            attn = attn.type_as(alibi_bias)
            attn[:, : alibi_bias.size(1)] += alibi_bias

        if padding_mask is not None and padding_mask.any():
            attn = attn.masked_fill(
                padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
                float("-inf"),
            )

        attn = attn.softmax(dim=-1, dtype=torch.float32).to(dtype=dtype)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2)  #
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x