File size: 1,857 Bytes
72cd6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee9682
72cd6b4
 
 
 
 
 
 
 
 
6ee9682
 
72cd6b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee9682
72cd6b4
 
 
 
 
6ee9682
 
 
 
 
72cd6b4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- f1
model-index:
- name: kogpt2-base-v2-finetuned-klue-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: klue
      type: klue
      config: ner
      split: validation
      args: ner
    metrics:
    - name: F1
      type: f1
      value: 0.7679222357229647
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kogpt2-base-v2-finetuned-klue-ner

This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3344
- F1: 0.7679

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.4868        | 1.0   | 876  | 0.3412          | 0.7589 |
| 0.2705        | 2.0   | 1752 | 0.3255          | 0.7692 |
| 0.2199        | 3.0   | 2628 | 0.3220          | 0.7560 |
| 0.181         | 4.0   | 3504 | 0.3122          | 0.7815 |
| 0.1409        | 5.0   | 4380 | 0.3344          | 0.7679 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3