File size: 13,943 Bytes
cca70c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import math
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA


from torch.utils.data import Dataset, DataLoader
import datetime
import os


class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
        
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads
        
        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, d_model)
        self.W_v = nn.Linear(d_model, d_model)
        self.W_o = nn.Linear(d_model, d_model)
        
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
        attn_probs = torch.softmax(attn_scores, dim=-1)
        output = torch.matmul(attn_probs, V)
        return output
        
    def split_heads(self, x):
        batch_size, seq_length, d_model = x.size()
        return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
        
    def combine_heads(self, x):
        batch_size, _, seq_length, d_k = x.size()
        return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
        
    def forward(self, Q, K, V, mask=None):
        Q = self.split_heads(self.W_q(Q))
        K = self.split_heads(self.W_k(K))
        V = self.split_heads(self.W_v(V))
        
        attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
        output = self.W_o(self.combine_heads(attn_output))
        return output

class PositionWiseFeedForward(nn.Module):
    def __init__(self, d_model, d_ff):
        super(PositionWiseFeedForward, self).__init__()
        self.fc1 = nn.Linear(d_model, d_ff)
        self.fc2 = nn.Linear(d_ff, d_model)
        self.relu = nn.ReLU()

    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))
    

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_seq_length):
        super(PositionalEncoding, self).__init__()
        
        pe = torch.zeros(max_seq_length, d_model)
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        
        self.register_buffer('pe', pe.unsqueeze(0))
        
    def forward(self, x):
        return x + self.pe[:, :x.size(1)]
    

class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(EncoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, mask):
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm2(x + self.dropout(ff_output))
        return x
    
class DecoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, dropout):
        super(DecoderLayer, self).__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads)
        self.cross_attn = MultiHeadAttention(d_model, num_heads)
        self.feed_forward = PositionWiseFeedForward(d_model, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, enc_output, src_mask, tgt_mask):
        attn_output = self.self_attn(x, x, x, tgt_mask)
        x = self.norm1(x + self.dropout(attn_output))
        attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
        x = self.norm2(x + self.dropout(attn_output))
        ff_output = self.feed_forward(x)
        x = self.norm3(x + self.dropout(ff_output))
        return x
    


class Transformer(nn.Module):
    def __init__(self, src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout):
        super(Transformer, self).__init__()
        self.encoder_embedding = nn.Embedding(src_vocab_size, d_model)
        self.decoder_embedding = nn.Embedding(tgt_vocab_size, d_model)
        self.positional_encoding = PositionalEncoding(d_model, max_seq_length)

        self.encoder_layers = nn.ModuleList([EncoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
        self.decoder_layers = nn.ModuleList([DecoderLayer(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])

        self.fc = nn.Linear(d_model, tgt_vocab_size)
        self.dropout = nn.Dropout(dropout)
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    def generate_mask(self, src, tgt):
        src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
        tgt_mask = (tgt != 0).unsqueeze(1).unsqueeze(3)
        seq_length = tgt.size(1)
        # nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool()
        nopeak_mask = (1 - torch.triu(torch.ones(1, seq_length, seq_length), diagonal=1)).bool().to(self.device)

        tgt_mask = tgt_mask & nopeak_mask
        return src_mask, tgt_mask

    def forward(self, src, tgt):
        src_mask, tgt_mask = self.generate_mask(src, tgt)
        src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(src)))
        tgt_embedded = self.dropout(self.positional_encoding(self.decoder_embedding(tgt)))

        enc_output = src_embedded
        for enc_layer in self.encoder_layers:
            enc_output = enc_layer(enc_output, src_mask)

        dec_output = tgt_embedded
        for dec_layer in self.decoder_layers:
            dec_output = dec_layer(dec_output, enc_output, src_mask, tgt_mask)

        output = self.fc(dec_output)
        return output


    def encode(self, test_data):
        test_data = test_data.to(self.device)

        with torch.no_grad():
            self.eval()  # Set the model to evaluation mode

            # Get the encoding layer output
            src_mask, _ = self.generate_mask(test_data, test_data[:, :-1])
            src_embedded = self.dropout(self.positional_encoding(self.encoder_embedding(test_data)))

            encoding_layer_output = src_embedded
            for enc_layer in self.encoder_layers:
                encoding_layer_output = enc_layer(encoding_layer_output, src_mask)

            # Average the encoding vectors for each data point
            averaged_vectors = torch.mean(encoding_layer_output, dim=1)

        # Flatten the averaged vectors and move to cpu
        flattened_vectors = averaged_vectors.view(-1, 256).cpu().numpy()

        return flattened_vectors

    
class MyDataset(Dataset):
    def __init__(self, df):
        self.data = np.array(df.window.tolist())
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        src = self.data[idx]
        tgt = self.data[idx]
        return src, tgt
    

import os
import torch
import pandas as pd
from torch import nn, optim
from torch.utils.data import DataLoader
import datetime

class TransformerTrainer:
    def __init__(self,
                 train_dataset,
                 val_dataset,

                 src_vocab_size = 16400, 
                 tgt_vocab_size = 16400, 
                 d_model = 256, 
                 num_heads = 8, 
                 num_layers = 6, 
                 d_ff = 2048, 
                 max_seq_length = 14, 
                 dropout = 0.1, 
                 batch_size = 16, 
                 lr = 0.00001, 
                 num_epochs = 10, 
                 save = False):
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.src_vocab_size = src_vocab_size
        self.tgt_vocab_size = tgt_vocab_size
        self.d_model = d_model
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.d_ff = d_ff
        self.max_seq_length = max_seq_length
        self.dropout = dropout
        self.batch_size = batch_size
        self.lr = lr
        self.num_epochs = num_epochs
        self.save = save

        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self.transformer = Transformer(src_vocab_size, tgt_vocab_size, d_model, num_heads, num_layers, d_ff, max_seq_length, dropout)
        self.transformer.to(self.device)
        self.criterion = nn.CrossEntropyLoss(ignore_index=0)
        self.optimizer = optim.Adam(self.transformer.parameters(), lr=self.lr, betas=(0.9, 0.98), eps=1e-9)
        self.train_losses = []
        self.val_losses = []
        self.timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

    def load_data(self):
        self.dataloader = DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True)
        self.val_dataloader = DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=True)

    def train_epoch(self, epoch):
        epoch_train_loss = 0.0
        for src_data, target_data in self.dataloader:
            src_data = src_data.to(self.device)
            target_data = target_data.to(self.device)
            
            self.optimizer.zero_grad()
            output = self.transformer(src_data, target_data[:, :-1])
            loss = self.criterion(output.contiguous().view(-1, self.tgt_vocab_size), target_data[:, 1:].contiguous().view(-1))
            loss.backward()
            self.optimizer.step()
            
            epoch_train_loss += loss.item()
        
        self.train_losses.append(epoch_train_loss / len(self.dataloader))

    def validate_epoch(self, epoch):
        epoch_val_loss = 0.0
        self.transformer.eval()  
        with torch.no_grad():  
            for src_data, target_data in self.val_dataloader:
                src_data = src_data.to(self.device)
                target_data = target_data.to(self.device)

                output = self.transformer(src_data, target_data[:, :-1])
                loss = self.criterion(output.contiguous().view(-1, self.tgt_vocab_size), target_data[:, 1:].contiguous().view(-1))

                epoch_val_loss += loss.item()

        self.val_losses.append(epoch_val_loss / len(self.val_dataloader))
        self.transformer.train()

    def save_model(self, epoch):
        if self.save:
            os.makedirs(self.timestamp, exist_ok=True)
            epoch_str = str(epoch+1).zfill(2) 
            torch.save({
                'epoch': epoch,
                'model_state_dict': self.transformer.state_dict(),
                'optimizer_state_dict': self.optimizer.state_dict(),
                'loss': self.train_losses[-1],
                'src_vocab_size': self.src_vocab_size,
                'tgt_vocab_size': self.tgt_vocab_size,
                'd_model': self.d_model,
                'num_heads': self.num_heads,
                'num_layers': self.num_layers,
                'd_ff': self.d_ff,
                'max_seq_length': self.max_seq_length,
                'dropout': self.dropout,
            }, os.path.join(self.timestamp, f"epoch_{epoch_str}.pth"))

    def train(self):
        self.load_data()
        for epoch in range(self.num_epochs):
            self.train_epoch(epoch)
            self.validate_epoch(epoch)
            print(f"Epoch: {epoch+1}, Training Loss: {self.train_losses[-1]:.6f}, Validation Loss: {self.val_losses[-1]:.6f}")
            self.save_model(epoch)

    def encode(self, test_data):
        self.transformer.eval()  # Set the model to evaluation mode

        with torch.no_grad():
            src_mask, _ = self.transformer.generate_mask(test_data, test_data[:, :-1])
            src_embedded = self.transformer.dropout(self.transformer.positional_encoding(self.transformer.encoder_embedding(test_data)))

            encoding_layer_output = src_embedded
            for enc_layer in self.transformer.encoder_layers:
                encoding_layer_output = enc_layer(encoding_layer_output, src_mask)

            averaged_vectors = torch.mean(encoding_layer_output, dim=1)

        flattened_vectors = averaged_vectors.view(-1, self.d_model).cpu().numpy()

        return flattened_vectors

class MyDataset(Dataset):
    def __init__(self, df):
        self.data = np.array(df.window.tolist())
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        src = self.data[idx]
        tgt = self.data[idx]
        return src, tgt

def prepare_data(path, start, end):
    df = pd.read_feather(path)[start:end]
    df = df.sort_values('sequence_index')
    dataset = MyDataset(df)
    return dataset



def load_model(path_to_saved_model):
    checkpoint = torch.load(path_to_saved_model)

    # Initialize the model
    model = utils.Transformer(
        src_vocab_size=checkpoint['src_vocab_size'],
        tgt_vocab_size=checkpoint['tgt_vocab_size'],
        d_model=checkpoint['d_model'],
        num_heads=checkpoint['num_heads'],
        num_layers=checkpoint['num_layers'],
        d_ff=checkpoint['d_ff'],
        max_seq_length=checkpoint['max_seq_length'],
        dropout=checkpoint['dropout']
    )
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model.to(device)
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()  # Set to evaluation mode

    return model, device