File size: 1,798 Bytes
227b07b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- pearsonr
model-index:
- name: bert-base-finetuned-sts
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: klue
      type: klue
      args: sts
    metrics:
    - name: Pearsonr
      type: pearsonr
      value: 0.9000373376026184
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-finetuned-sts

This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4582
- Pearsonr: 0.9000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Pearsonr |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 183  | 0.5329          | 0.8827   |
| No log        | 2.0   | 366  | 0.4549          | 0.8937   |
| 0.2316        | 3.0   | 549  | 0.4656          | 0.8959   |
| 0.2316        | 4.0   | 732  | 0.4651          | 0.8990   |
| 0.2316        | 5.0   | 915  | 0.4582          | 0.9000   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1