winvoker's picture
Update README.md
bd29f59
|
raw
history blame
2.14 kB

This repository is cloned from https://huggingface.co/akdeniz27/bert-base-turkish-cased-ner


language: tr widget: - text: "Mustafa Kemal Atatürk 19 Mayıs 1919'da Samsun'a çıktı."

Turkish Named Entity Recognition (NER) Model

This model is the fine-tuned model of "dbmdz/bert-base-turkish-cased" using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt).

Fine-tuning parameters:

task = "ner"
model_checkpoint = "dbmdz/bert-base-turkish-cased"
batch_size = 8 
label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC']
max_length = 512 
learning_rate = 2e-5 
num_train_epochs = 3 
weight_decay = 0.01 

How to use:

model = AutoModelForTokenClassification.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("akdeniz27/bert-base-turkish-cased-ner")
ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first")
ner("<your text here>")

Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter.

Reference test results: