winstcha's picture
Upload README.md with huggingface_hub
0b337d1 verified
|
raw
history blame
1.9 kB
---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft
- llama-cpp
- gguf-my-repo
library_name: transformers
base_model: winstcha/rewrite-7B-INT4
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# winstcha/rewrite-7B-INT4-Q3_K_L-GGUF
This model was converted to GGUF format from [`winstcha/rewrite-7B-INT4`](https://huggingface.co/winstcha/rewrite-7B-INT4) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/winstcha/rewrite-7B-INT4) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo winstcha/rewrite-7B-INT4-Q3_K_L-GGUF --hf-file rewrite-7b-int4-q3_k_l.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo winstcha/rewrite-7B-INT4-Q3_K_L-GGUF --hf-file rewrite-7b-int4-q3_k_l.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo winstcha/rewrite-7B-INT4-Q3_K_L-GGUF --hf-file rewrite-7b-int4-q3_k_l.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo winstcha/rewrite-7B-INT4-Q3_K_L-GGUF --hf-file rewrite-7b-int4-q3_k_l.gguf -c 2048
```