|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: train |
|
split: train |
|
args: train |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.87 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.87 |
|
- Loss: 0.9175 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 17 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Accuracy | Validation Loss | |
|
|:-------------:|:-----:|:----:|:--------:|:---------------:| |
|
| 2.2295 | 1.0 | 113 | 0.4 | 2.1501 | |
|
| 1.7373 | 2.0 | 226 | 0.6 | 1.6194 | |
|
| 1.3497 | 3.0 | 339 | 0.72 | 1.1717 | |
|
| 1.0135 | 4.0 | 452 | 0.71 | 1.0361 | |
|
| 0.6951 | 5.0 | 565 | 0.77 | 0.7724 | |
|
| 0.4279 | 6.0 | 678 | 0.76 | 0.7731 | |
|
| 0.5178 | 7.0 | 791 | 0.82 | 0.6048 | |
|
| 0.141 | 8.0 | 904 | 0.79 | 0.7486 | |
|
| 0.2459 | 9.0 | 1017 | 0.85 | 0.6326 | |
|
| 0.0331 | 10.0 | 1130 | 0.82 | 0.8706 | |
|
| 0.0214 | 11.0 | 1243 | 0.81 | 1.0099 | |
|
| 0.0744 | 12.0 | 1356 | 0.8 | 1.0210 | |
|
| 0.0043 | 13.0 | 1469 | 0.82 | 0.9894 | |
|
| 0.0032 | 14.0 | 1582 | 0.82 | 0.9803 | |
|
| 0.0025 | 15.0 | 1695 | 0.83 | 1.0476 | |
|
| 0.0021 | 16.0 | 1808 | 0.82 | 1.0483 | |
|
| 0.0183 | 17.0 | 1921 | 0.87 | 0.9175 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.0 |
|
- Tokenizers 0.13.3 |
|
|