Upload all models and assets for vls (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- README.md +773 -0
- models/embeddings/aligned/vls_128d.bin +3 -0
- models/embeddings/aligned/vls_128d.meta.json +1 -0
- models/embeddings/aligned/vls_128d.projection.npy +3 -0
- models/embeddings/aligned/vls_128d_metadata.json +8 -0
- models/embeddings/aligned/vls_32d.bin +3 -0
- models/embeddings/aligned/vls_32d.meta.json +1 -0
- models/embeddings/aligned/vls_32d.projection.npy +3 -0
- models/embeddings/aligned/vls_32d_metadata.json +8 -0
- models/embeddings/aligned/vls_64d.bin +3 -0
- models/embeddings/aligned/vls_64d.meta.json +1 -0
- models/embeddings/aligned/vls_64d.projection.npy +3 -0
- models/embeddings/aligned/vls_64d_metadata.json +8 -0
- models/embeddings/monolingual/vls_128d.bin +3 -0
- models/embeddings/monolingual/vls_128d.meta.json +1 -0
- models/embeddings/monolingual/vls_128d_metadata.json +16 -0
- models/embeddings/monolingual/vls_32d.bin +3 -0
- models/embeddings/monolingual/vls_32d.meta.json +1 -0
- models/embeddings/monolingual/vls_32d_metadata.json +16 -0
- models/embeddings/monolingual/vls_64d.bin +3 -0
- models/embeddings/monolingual/vls_64d.meta.json +1 -0
- models/embeddings/monolingual/vls_64d_metadata.json +16 -0
- models/subword_markov/vls_markov_ctx1_subword.parquet +3 -0
- models/subword_markov/vls_markov_ctx1_subword_metadata.json +7 -0
- models/subword_markov/vls_markov_ctx2_subword.parquet +3 -0
- models/subword_markov/vls_markov_ctx2_subword_metadata.json +7 -0
- models/subword_markov/vls_markov_ctx3_subword.parquet +3 -0
- models/subword_markov/vls_markov_ctx3_subword_metadata.json +7 -0
- models/subword_markov/vls_markov_ctx4_subword.parquet +3 -0
- models/subword_markov/vls_markov_ctx4_subword_metadata.json +7 -0
- models/subword_ngram/vls_2gram_subword.parquet +3 -0
- models/subword_ngram/vls_2gram_subword_metadata.json +7 -0
- models/subword_ngram/vls_3gram_subword.parquet +3 -0
- models/subword_ngram/vls_3gram_subword_metadata.json +7 -0
- models/subword_ngram/vls_4gram_subword.parquet +3 -0
- models/subword_ngram/vls_4gram_subword_metadata.json +7 -0
- models/subword_ngram/vls_5gram_subword.parquet +3 -0
- models/subword_ngram/vls_5gram_subword_metadata.json +7 -0
- models/tokenizer/vls_tokenizer_16k.model +3 -0
- models/tokenizer/vls_tokenizer_16k.vocab +0 -0
- models/tokenizer/vls_tokenizer_32k.model +3 -0
- models/tokenizer/vls_tokenizer_32k.vocab +0 -0
- models/tokenizer/vls_tokenizer_64k.model +3 -0
- models/tokenizer/vls_tokenizer_64k.vocab +0 -0
- models/tokenizer/vls_tokenizer_8k.model +3 -0
- models/tokenizer/vls_tokenizer_8k.vocab +0 -0
- models/vocabulary/vls_vocabulary.parquet +3 -0
- models/vocabulary/vls_vocabulary_metadata.json +17 -0
- models/word_markov/vls_markov_ctx1_word.parquet +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: vls
|
| 3 |
+
language_name: West Flemish
|
| 4 |
+
language_family: germanic_west_continental
|
| 5 |
+
tags:
|
| 6 |
+
- wikilangs
|
| 7 |
+
- nlp
|
| 8 |
+
- tokenizer
|
| 9 |
+
- embeddings
|
| 10 |
+
- n-gram
|
| 11 |
+
- markov
|
| 12 |
+
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
+
- monolingual
|
| 24 |
+
- family-germanic_west_continental
|
| 25 |
+
license: mit
|
| 26 |
+
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
+
datasets:
|
| 29 |
+
- omarkamali/wikipedia-monthly
|
| 30 |
+
dataset_info:
|
| 31 |
+
name: wikipedia-monthly
|
| 32 |
+
description: Monthly snapshots of Wikipedia articles across 300+ languages
|
| 33 |
+
metrics:
|
| 34 |
+
- name: best_compression_ratio
|
| 35 |
+
type: compression
|
| 36 |
+
value: 4.163
|
| 37 |
+
- name: best_isotropy
|
| 38 |
+
type: isotropy
|
| 39 |
+
value: 0.8756
|
| 40 |
+
- name: vocabulary_size
|
| 41 |
+
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-11
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
# West Flemish - Wikilangs Models
|
| 47 |
+
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
+
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **West Flemish** Wikipedia data.
|
| 50 |
+
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
+
|
| 52 |
+
## 📋 Repository Contents
|
| 53 |
+
|
| 54 |
+
### Models & Assets
|
| 55 |
+
|
| 56 |
+
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
+
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
+
- Language Vocabulary
|
| 62 |
+
- Language Statistics
|
| 63 |
+
|
| 64 |
+

|
| 65 |
+
|
| 66 |
+
### Analysis and Evaluation
|
| 67 |
+
|
| 68 |
+
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
|
| 69 |
+
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
|
| 70 |
+
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
+
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
+
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
+
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
+
- [Visualizations Index](#visualizations-index)
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
## 1. Tokenizer Evaluation
|
| 80 |
+
|
| 81 |
+

|
| 82 |
+
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
+
### Results
|
| 90 |
+
|
| 91 |
+
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
+
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.334x | 3.34 | 0.0287% | 502,567 |
|
| 94 |
+
| **16k** | 3.665x | 3.67 | 0.0315% | 457,201 |
|
| 95 |
+
| **32k** | 3.934x | 3.94 | 0.0338% | 425,860 |
|
| 96 |
+
| **64k** | 4.163x 🏆 | 4.17 | 0.0358% | 402,499 |
|
| 97 |
+
|
| 98 |
+
### Tokenization Examples
|
| 99 |
+
|
| 100 |
+
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
+
|
| 102 |
+
**Sample 1:** `Achtntwientig is 't getal 28, e nateurlik getal achter zeevnetwientig en voorn n...`
|
| 103 |
+
|
| 104 |
+
| Vocab | Tokens | Count |
|
| 105 |
+
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁a chtn tw ientig ▁is ▁' t ▁getal ▁ 2 ... (+18 more)` | 28 |
|
| 107 |
+
| 16k | `▁a chtn tw ientig ▁is ▁' t ▁getal ▁ 2 ... (+18 more)` | 28 |
|
| 108 |
+
| 32k | `▁a chtn twientig ▁is ▁' t ▁getal ▁ 2 8 ... (+13 more)` | 23 |
|
| 109 |
+
| 64k | `▁achtn twientig ▁is ▁' t ▁getal ▁ 2 8 , ... (+12 more)` | 22 |
|
| 110 |
+
|
| 111 |
+
**Sample 2:** `de volksnoame van de gemêente Ôostrôzebeke e dêelgemêente van Stoan, zie: Rôzebe...`
|
| 112 |
+
|
| 113 |
+
| Vocab | Tokens | Count |
|
| 114 |
+
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁de ▁volk sn oame ▁van ▁de ▁gemêente ▁ôostrôzebeke ▁e ▁dêelgemêente ... (+10 more)` | 20 |
|
| 116 |
+
| 16k | `▁de ▁volk sn oame ▁van ▁de ▁gemêente ▁ôostrôzebeke ▁e ▁dêelgemêente ... (+10 more)` | 20 |
|
| 117 |
+
| 32k | `▁de ▁volk snoame ▁van ▁de ▁gemêente ▁ôostrôzebeke ▁e ▁dêelgemêente ▁van ... (+8 more)` | 18 |
|
| 118 |
+
| 64k | `▁de ▁volk snoame ▁van ▁de ▁gemêente ▁ôostrôzebeke ▁e ▁dêelgemêente ▁van ... (+8 more)` | 18 |
|
| 119 |
+
|
| 120 |
+
**Sample 3:** `Paltoga (Russisch: Палтога) is e dorp in Rusland in 't district Vytegorsky (obla...`
|
| 121 |
+
|
| 122 |
+
| Vocab | Tokens | Count |
|
| 123 |
+
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁pal t og a ▁( russisch : ▁ п а ... (+37 more)` | 47 |
|
| 125 |
+
| 16k | `▁pal t og a ▁( russisch : ▁ п а ... (+35 more)` | 45 |
|
| 126 |
+
| 32k | `▁pal t oga ▁( russisch : ▁ п ал то ... (+29 more)` | 39 |
|
| 127 |
+
| 64k | `▁palt oga ▁( russisch : ▁ п ал то г ... (+28 more)` | 38 |
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
### Key Findings
|
| 131 |
+
|
| 132 |
+
- **Best Compression:** 64k achieves 4.163x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0287% unknown tokens
|
| 134 |
+
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
+
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
## 2. N-gram Model Evaluation
|
| 139 |
+
|
| 140 |
+

|
| 141 |
+
|
| 142 |
+

|
| 143 |
+
|
| 144 |
+

|
| 145 |
+
|
| 146 |
+
### Results
|
| 147 |
+
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 12,804 | 13.64 | 41,132 | 15.7% | 36.6% |
|
| 151 |
+
| **2-gram** | Subword | 282 🏆 | 8.14 | 3,241 | 64.7% | 99.2% |
|
| 152 |
+
| **3-gram** | Word | 27,763 | 14.76 | 51,974 | 7.7% | 22.9% |
|
| 153 |
+
| **3-gram** | Subword | 2,519 | 11.30 | 27,863 | 25.7% | 68.5% |
|
| 154 |
+
| **4-gram** | Word | 45,411 | 15.47 | 74,505 | 6.8% | 17.6% |
|
| 155 |
+
| **4-gram** | Subword | 15,236 | 13.90 | 154,373 | 12.4% | 36.1% |
|
| 156 |
+
| **5-gram** | Word | 30,248 | 14.88 | 47,265 | 8.2% | 19.7% |
|
| 157 |
+
| **5-gram** | Subword | 57,965 | 15.82 | 420,619 | 7.2% | 22.1% |
|
| 158 |
+
|
| 159 |
+
### Top 5 N-grams by Size
|
| 160 |
+
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `van de` | 15,489 |
|
| 166 |
+
| 2 | `in de` | 10,285 |
|
| 167 |
+
| 3 | `in t` | 6,874 |
|
| 168 |
+
| 4 | `van t` | 5,995 |
|
| 169 |
+
| 5 | `en de` | 3,723 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `joar in de` | 850 |
|
| 176 |
+
| 2 | `van t joar` | 791 |
|
| 177 |
+
| 3 | `bouwkundig erfgoed in` | 765 |
|
| 178 |
+
| 4 | `in west vloandern` | 742 |
|
| 179 |
+
| 5 | `t joar is` | 714 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `t joar is t` | 693 |
|
| 186 |
+
| 2 | `eeuwe volgenst de christelikke` | 526 |
|
| 187 |
+
| 3 | `volgenst de christelikke joartellienge` | 526 |
|
| 188 |
+
| 4 | `noa bouwkundig erfgoed in` | 354 |
|
| 189 |
+
| 5 | `t ende van t` | 337 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `eeuwe volgenst de christelikke joartellienge` | 526 |
|
| 196 |
+
| 2 | `t ende van t joar` | 304 |
|
| 197 |
+
| 3 | `volgenst de christelikke joartellienge gebeurtenissn` | 292 |
|
| 198 |
+
| 4 | `lyste van bouwkundig erfgoed in` | 251 |
|
| 199 |
+
| 5 | `toet t ende van t` | 250 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `n _` | 399,169 |
|
| 206 |
+
| 2 | `e _` | 395,658 |
|
| 207 |
+
| 3 | `e r` | 217,859 |
|
| 208 |
+
| 4 | `e n` | 214,189 |
|
| 209 |
+
| 5 | `d e` | 208,906 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
+
|
| 213 |
+
| Rank | N-gram | Count |
|
| 214 |
+
|------|--------|-------|
|
| 215 |
+
| 1 | `_ d e` | 123,266 |
|
| 216 |
+
| 2 | `d e _` | 116,073 |
|
| 217 |
+
| 3 | `a n _` | 97,189 |
|
| 218 |
+
| 4 | `e n _` | 96,860 |
|
| 219 |
+
| 5 | `_ v a` | 80,611 |
|
| 220 |
+
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
+
|
| 223 |
+
| Rank | N-gram | Count |
|
| 224 |
+
|------|--------|-------|
|
| 225 |
+
| 1 | `_ d e _` | 90,909 |
|
| 226 |
+
| 2 | `_ v a n` | 76,359 |
|
| 227 |
+
| 3 | `v a n _` | 74,288 |
|
| 228 |
+
| 4 | `_ i n _` | 52,878 |
|
| 229 |
+
| 5 | `n _ d e` | 48,858 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ v a n _` | 73,086 |
|
| 236 |
+
| 2 | `n _ d e _` | 39,289 |
|
| 237 |
+
| 3 | `a n _ d e` | 22,613 |
|
| 238 |
+
| 4 | `v a n _ d` | 21,346 |
|
| 239 |
+
| 5 | `e _ v a n` | 19,923 |
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
### Key Findings
|
| 243 |
+
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 282
|
| 245 |
+
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~22% of corpus
|
| 247 |
+
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
## 3. Markov Chain Evaluation
|
| 251 |
+
|
| 252 |
+

|
| 253 |
+
|
| 254 |
+

|
| 255 |
+
|
| 256 |
+

|
| 257 |
+
|
| 258 |
+
### Results
|
| 259 |
+
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.8228 | 1.769 | 5.44 | 158,804 | 17.7% |
|
| 263 |
+
| **1** | Subword | 1.2080 | 2.310 | 9.96 | 735 | 0.0% |
|
| 264 |
+
| **2** | Word | 0.2583 | 1.196 | 1.64 | 860,998 | 74.2% |
|
| 265 |
+
| **2** | Subword | 1.0608 | 2.086 | 6.74 | 7,322 | 0.0% |
|
| 266 |
+
| **3** | Word | 0.0895 | 1.064 | 1.15 | 1,409,019 | 91.1% |
|
| 267 |
+
| **3** | Subword | 0.9474 | 1.928 | 4.92 | 49,306 | 5.3% |
|
| 268 |
+
| **4** | Word | 0.0313 🏆 | 1.022 | 1.05 | 1,616,997 | 96.9% |
|
| 269 |
+
| **4** | Subword | 0.7502 | 1.682 | 3.21 | 242,577 | 25.0% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `de wyk van t nôordn gruujn dikkers in kontrast me 3 juli gin êen of mêercellig`
|
| 278 |
+
2. `van yper wunt en nieuw ryk in de kustvlaktn groene bewegienge wordn ze egliek nie kost`
|
| 279 |
+
3. `in ip t volgn nog 293 noa bouwkundig erfgoed bevern en mêer tyd toen ze van`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `van de verênigde stoatn busschn`
|
| 284 |
+
2. `in de dertiende êeuwe dus vès ipgedolvn gebied o den ôostkant van de verênigde stoatn en kanada`
|
| 285 |
+
3. `in t ôostn an ciney in noamn in en je viel italië were binn de stad stroomde`
|
| 286 |
+
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `joar in de 13e of 14e êeuwe en van de 50 000 en 120 000 beschreevn sôortn varieern`
|
| 290 |
+
2. `van t joar geboorn pontormo gabriel fahrenheit gustaaf flamen emiel lauwers bob dylan gestorvn jozef...`
|
| 291 |
+
3. `bouwkundig erfgoed in tiegem in west vloandern t es eignlyk nen ouden arm van den aa t grenst`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
+
|
| 295 |
+
1. `t joar is t 80e joar in de 10e eeuwe volgenst de christelikke joartellienge mmxii is e schrikkeljoar...`
|
| 296 |
+
2. `volgenst de christelikke joartellienge gebeurtenissn 25 april hertog jan zounder vrêes legt an d ips...`
|
| 297 |
+
3. `eeuwe volgenst de christelikke joartellienge gebeurtenissn april 5 de west vlamsche coureur gaston r...`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
+
|
| 304 |
+
**Context Size 1:**
|
| 305 |
+
|
| 306 |
+
1. `_scoe_taz,_we_ve`
|
| 307 |
+
2. `e,_scar-êli²_man`
|
| 308 |
+
3. `ndstoone_zogers_`
|
| 309 |
+
|
| 310 |
+
**Context Size 2:**
|
| 311 |
+
|
| 312 |
+
1. `n_'t_vroegroudt_a`
|
| 313 |
+
2. `e_priens)_gië_e_s`
|
| 314 |
+
3. `erd_ipparem_moste`
|
| 315 |
+
|
| 316 |
+
**Context Size 3:**
|
| 317 |
+
|
| 318 |
+
1. `_de_vanasamuele_(>`
|
| 319 |
+
2. `de_piegouwne_refeu`
|
| 320 |
+
3. `an_beken_deel_rede`
|
| 321 |
+
|
| 322 |
+
**Context Size 4:**
|
| 323 |
+
|
| 324 |
+
1. `_de_schopinidad_er_`
|
| 325 |
+
2. `_van_mandsche_kenme`
|
| 326 |
+
3. `van_flandn_ip_ne_bu`
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
### Key Findings
|
| 330 |
+
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 96.9% predictability
|
| 332 |
+
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (242,577 contexts)
|
| 334 |
+
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
+
## 4. Vocabulary Analysis
|
| 338 |
+
|
| 339 |
+

|
| 340 |
+
|
| 341 |
+

|
| 342 |
+
|
| 343 |
+

|
| 344 |
+
|
| 345 |
+
### Statistics
|
| 346 |
+
|
| 347 |
+
| Metric | Value |
|
| 348 |
+
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 68,458 |
|
| 350 |
+
| Total Tokens | 1,735,026 |
|
| 351 |
+
| Mean Frequency | 25.34 |
|
| 352 |
+
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 600.62 |
|
| 354 |
+
|
| 355 |
+
### Most Common Words
|
| 356 |
+
|
| 357 |
+
| Rank | Word | Frequency |
|
| 358 |
+
|------|------|-----------|
|
| 359 |
+
| 1 | de | 93,287 |
|
| 360 |
+
| 2 | van | 73,544 |
|
| 361 |
+
| 3 | in | 53,708 |
|
| 362 |
+
| 4 | en | 49,180 |
|
| 363 |
+
| 5 | t | 45,426 |
|
| 364 |
+
| 6 | e | 21,400 |
|
| 365 |
+
| 7 | is | 17,745 |
|
| 366 |
+
| 8 | zyn | 16,831 |
|
| 367 |
+
| 9 | n | 15,475 |
|
| 368 |
+
| 10 | die | 12,301 |
|
| 369 |
+
|
| 370 |
+
### Least Common Words (from vocabulary)
|
| 371 |
+
|
| 372 |
+
| Rank | Word | Frequency |
|
| 373 |
+
|------|------|-----------|
|
| 374 |
+
| 1 | myzeqe | 2 |
|
| 375 |
+
| 2 | seman | 2 |
|
| 376 |
+
| 3 | rumn | 2 |
|
| 377 |
+
| 4 | peshkopi | 2 |
|
| 378 |
+
| 5 | dibër | 2 |
|
| 379 |
+
| 6 | города | 2 |
|
| 380 |
+
| 7 | uytvoernde | 2 |
|
| 381 |
+
| 8 | stoatssecretoarisn | 2 |
|
| 382 |
+
| 9 | soamnstellinge | 2 |
|
| 383 |
+
| 10 | mph | 2 |
|
| 384 |
+
|
| 385 |
+
### Zipf's Law Analysis
|
| 386 |
+
|
| 387 |
+
| Metric | Value |
|
| 388 |
+
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0178 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.998718 |
|
| 391 |
+
| Adherence Quality | **excellent** |
|
| 392 |
+
|
| 393 |
+
### Coverage Analysis
|
| 394 |
+
|
| 395 |
+
| Top N Words | Coverage |
|
| 396 |
+
|-------------|----------|
|
| 397 |
+
| Top 100 | 40.8% |
|
| 398 |
+
| Top 1,000 | 63.3% |
|
| 399 |
+
| Top 5,000 | 79.0% |
|
| 400 |
+
| Top 10,000 | 85.3% |
|
| 401 |
+
|
| 402 |
+
### Key Findings
|
| 403 |
+
|
| 404 |
+
- **Zipf Compliance:** R²=0.9987 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 40.8% of corpus
|
| 406 |
+
- **Long Tail:** 58,458 words needed for remaining 14.7% coverage
|
| 407 |
+
|
| 408 |
+
---
|
| 409 |
+
## 5. Word Embeddings Evaluation
|
| 410 |
+
|
| 411 |
+

|
| 412 |
+
|
| 413 |
+

|
| 414 |
+
|
| 415 |
+

|
| 416 |
+
|
| 417 |
+

|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8756 🏆 | 0.3181 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8383 | 0.2517 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.5888 | 0.2007 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8756 | 0.3113 | 0.0840 | 0.3740 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8383 | 0.2465 | 0.1380 | 0.4500 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.5888 | 0.2020 | 0.2000 | 0.5260 |
|
| 437 |
+
|
| 438 |
+
### Key Findings
|
| 439 |
+
|
| 440 |
+
- **Best Isotropy:** mono_32d with 0.8756 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2550. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 20.0% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
+
|
| 445 |
+
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.109** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-s` | soôrtn, schwaben, schick |
|
| 465 |
+
| `-b` | binnstroomde, bolivië, biezelehe |
|
| 466 |
+
| `-a` | arenaria, addington, amazing |
|
| 467 |
+
| `-ge` | gelanceerd, gezeyd, gevoenn |
|
| 468 |
+
| `-o` | oendregienk, ogtepunt, omwald |
|
| 469 |
+
| `-be` | bewaren, bees, bedek |
|
| 470 |
+
| `-k` | kurs, kommiesje, koopman |
|
| 471 |
+
| `-d` | dié, donetsk, darling |
|
| 472 |
+
|
| 473 |
+
#### Productive Suffixes
|
| 474 |
+
| Suffix | Examples |
|
| 475 |
+
|--------|----------|
|
| 476 |
+
| `-e` | underne, binnstroomde, poginge |
|
| 477 |
+
| `-n` | soôrtn, fryslân, hopeweunn |
|
| 478 |
+
| `-s` | zothuus, kurs, cervantes |
|
| 479 |
+
| `-t` | ogtepunt, varlet, capaciteit |
|
| 480 |
+
| `-en` | conservatieven, schwaben, bewaren |
|
| 481 |
+
| `-d` | vervolgd, omwald, tulband |
|
| 482 |
+
| `-ge` | poginge, franstalige, lancerienge |
|
| 483 |
+
| `-r` | elektrotoer, êesteminister, hour |
|
| 484 |
+
|
| 485 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 486 |
+
|
| 487 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 488 |
+
|
| 489 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 490 |
+
|------|----------|------------------|----------|
|
| 491 |
+
| `enge` | 2.33x | 50 contexts | engel, oenger, mengel |
|
| 492 |
+
| `sche` | 1.68x | 141 contexts | schee, asche, vasche |
|
| 493 |
+
| `chte` | 1.60x | 115 contexts | achte, echte, vichte |
|
| 494 |
+
| `fran` | 2.05x | 37 contexts | frank, franz, frang |
|
| 495 |
+
| `schi` | 1.77x | 65 contexts | schip, schie, schid |
|
| 496 |
+
| `icht` | 1.56x | 114 contexts | richt, licht, vicht |
|
| 497 |
+
| `isch` | 1.83x | 51 contexts | ischl, visch, vischn |
|
| 498 |
+
| `hter` | 1.94x | 38 contexts | ahter, echter, achter |
|
| 499 |
+
| `nder` | 1.41x | 150 contexts | ander, under, onder |
|
| 500 |
+
| `elik` | 1.72x | 51 contexts | gelik, tielik, feliks |
|
| 501 |
+
| `oate` | 1.77x | 40 contexts | zoate, oater, moate |
|
| 502 |
+
| `erke` | 1.54x | 66 contexts | kerke, berke, werke |
|
| 503 |
+
|
| 504 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 505 |
+
|
| 506 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 507 |
+
|
| 508 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 509 |
+
|--------|--------|-----------|----------|
|
| 510 |
+
| `-s` | `-e` | 169 words | subklasse, sukerziekte |
|
| 511 |
+
| `-b` | `-e` | 149 words | bulskampstroate, beschoafde |
|
| 512 |
+
| `-s` | `-n` | 125 words | skorsenelen, steeën |
|
| 513 |
+
| `-b` | `-n` | 114 words | blokkn, behunn |
|
| 514 |
+
| `-k` | `-e` | 108 words | kunstacademie, kassie |
|
| 515 |
+
| `-m` | `-e` | 100 words | muuzee, multiple |
|
| 516 |
+
| `-o` | `-n` | 95 words | oafbusschn, ofebrookn |
|
| 517 |
+
| `-o` | `-e` | 91 words | ounbevlekte, omriengende |
|
| 518 |
+
| `-d` | `-e` | 90 words | dagtemprateure, duytstoalige |
|
| 519 |
+
| `-a` | `-e` | 88 words | adresse, ansluutienge |
|
| 520 |
+
|
| 521 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 522 |
+
|
| 523 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 524 |
+
|
| 525 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 526 |
+
|------|-----------------|------------|------|
|
| 527 |
+
| fermenteren | **`fermenter-e-n`** | 7.5 | `e` |
|
| 528 |
+
| benoaderd | **`benoa-de-rd`** | 7.5 | `de` |
|
| 529 |
+
| bruggelingen | **`bruggeling-e-n`** | 7.5 | `e` |
|
| 530 |
+
| romantiek | **`romanti-e-k`** | 7.5 | `e` |
|
| 531 |
+
| vruchtvlees | **`vruchtv-le-es`** | 7.5 | `le` |
|
| 532 |
+
| treuzelen | **`treuze-le-n`** | 7.5 | `le` |
|
| 533 |
+
| vluchters | **`vlucht-e-rs`** | 7.5 | `e` |
|
| 534 |
+
| resources | **`resourc-e-s`** | 7.5 | `e` |
|
| 535 |
+
| splenters | **`splent-e-rs`** | 7.5 | `e` |
|
| 536 |
+
| ipbryngsten | **`ipbryngst-e-n`** | 7.5 | `e` |
|
| 537 |
+
| vienkezetters | **`vienkezett-e-rs`** | 7.5 | `e` |
|
| 538 |
+
| knobbeltjes | **`knobbeltj-e-s`** | 7.5 | `e` |
|
| 539 |
+
| beweegboar | **`beweegbo-a-r`** | 7.5 | `a` |
|
| 540 |
+
| schoonhoven | **`schoonhov-e-n`** | 7.5 | `e` |
|
| 541 |
+
| donspluumtjes | **`donspluumtj-e-s`** | 7.5 | `e` |
|
| 542 |
+
|
| 543 |
+
### 6.6 Linguistic Interpretation
|
| 544 |
+
|
| 545 |
+
> **Automated Insight:**
|
| 546 |
+
The language West Flemish shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 547 |
+
|
| 548 |
+
---
|
| 549 |
+
## 7. Summary & Recommendations
|
| 550 |
+
|
| 551 |
+

|
| 552 |
+
|
| 553 |
+
### Production Recommendations
|
| 554 |
+
|
| 555 |
+
| Component | Recommended | Rationale |
|
| 556 |
+
|-----------|-------------|-----------|
|
| 557 |
+
| Tokenizer | **64k BPE** | Best compression (4.16x) |
|
| 558 |
+
| N-gram | **2-gram** | Lowest perplexity (282) |
|
| 559 |
+
| Markov | **Context-4** | Highest predictability (96.9%) |
|
| 560 |
+
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
---
|
| 564 |
+
## Appendix: Metrics Glossary & Interpretation Guide
|
| 565 |
+
|
| 566 |
+
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
|
| 567 |
+
|
| 568 |
+
### Tokenizer Metrics
|
| 569 |
+
|
| 570 |
+
**Compression Ratio**
|
| 571 |
+
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
|
| 572 |
+
>
|
| 573 |
+
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
|
| 574 |
+
>
|
| 575 |
+
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
|
| 576 |
+
|
| 577 |
+
**Average Token Length (Fertility)**
|
| 578 |
+
> *Definition:* Mean number of characters per token produced by the tokenizer.
|
| 579 |
+
>
|
| 580 |
+
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
|
| 581 |
+
>
|
| 582 |
+
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
|
| 583 |
+
|
| 584 |
+
**Unknown Token Rate (OOV Rate)**
|
| 585 |
+
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
|
| 586 |
+
>
|
| 587 |
+
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
|
| 588 |
+
>
|
| 589 |
+
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
|
| 590 |
+
|
| 591 |
+
### N-gram Model Metrics
|
| 592 |
+
|
| 593 |
+
**Perplexity**
|
| 594 |
+
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
|
| 595 |
+
>
|
| 596 |
+
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
|
| 597 |
+
>
|
| 598 |
+
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
|
| 599 |
+
|
| 600 |
+
**Entropy**
|
| 601 |
+
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
|
| 602 |
+
>
|
| 603 |
+
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
|
| 604 |
+
>
|
| 605 |
+
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
|
| 606 |
+
|
| 607 |
+
**Coverage (Top-K)**
|
| 608 |
+
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
|
| 609 |
+
>
|
| 610 |
+
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
|
| 611 |
+
>
|
| 612 |
+
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
|
| 613 |
+
|
| 614 |
+
### Markov Chain Metrics
|
| 615 |
+
|
| 616 |
+
**Average Entropy**
|
| 617 |
+
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
|
| 618 |
+
>
|
| 619 |
+
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
|
| 620 |
+
>
|
| 621 |
+
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
|
| 622 |
+
|
| 623 |
+
**Branching Factor**
|
| 624 |
+
> *Definition:* Average number of unique next tokens observed for each context.
|
| 625 |
+
>
|
| 626 |
+
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
|
| 627 |
+
>
|
| 628 |
+
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
|
| 629 |
+
|
| 630 |
+
**Predictability**
|
| 631 |
+
> *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
|
| 632 |
+
>
|
| 633 |
+
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
|
| 634 |
+
>
|
| 635 |
+
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
|
| 636 |
+
|
| 637 |
+
### Vocabulary & Zipf's Law Metrics
|
| 638 |
+
|
| 639 |
+
**Zipf's Coefficient**
|
| 640 |
+
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
|
| 641 |
+
>
|
| 642 |
+
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
|
| 643 |
+
>
|
| 644 |
+
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
|
| 645 |
+
|
| 646 |
+
**R² (Coefficient of Determination)**
|
| 647 |
+
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
|
| 648 |
+
>
|
| 649 |
+
> *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
|
| 650 |
+
>
|
| 651 |
+
> *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
|
| 652 |
+
|
| 653 |
+
**Vocabulary Coverage**
|
| 654 |
+
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
|
| 655 |
+
>
|
| 656 |
+
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
|
| 657 |
+
>
|
| 658 |
+
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
|
| 659 |
+
|
| 660 |
+
### Word Embedding Metrics
|
| 661 |
+
|
| 662 |
+
**Isotropy**
|
| 663 |
+
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
|
| 664 |
+
>
|
| 665 |
+
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
|
| 666 |
+
>
|
| 667 |
+
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
|
| 668 |
+
|
| 669 |
+
**Average Norm**
|
| 670 |
+
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
|
| 671 |
+
>
|
| 672 |
+
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
|
| 673 |
+
>
|
| 674 |
+
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
|
| 675 |
+
|
| 676 |
+
**Cosine Similarity**
|
| 677 |
+
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
|
| 678 |
+
>
|
| 679 |
+
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
|
| 680 |
+
>
|
| 681 |
+
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
|
| 682 |
+
|
| 683 |
+
**t-SNE Visualization**
|
| 684 |
+
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
|
| 685 |
+
>
|
| 686 |
+
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
|
| 687 |
+
>
|
| 688 |
+
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
|
| 689 |
+
|
| 690 |
+
### General Interpretation Guidelines
|
| 691 |
+
|
| 692 |
+
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
|
| 693 |
+
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
|
| 694 |
+
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
|
| 695 |
+
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
|
| 696 |
+
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
### Visualizations Index
|
| 700 |
+
|
| 701 |
+
| Visualization | Description |
|
| 702 |
+
|---------------|-------------|
|
| 703 |
+
| Tokenizer Compression | Compression ratios by vocabulary size |
|
| 704 |
+
| Tokenizer Fertility | Average token length by vocabulary |
|
| 705 |
+
| Tokenizer OOV | Unknown token rates |
|
| 706 |
+
| Tokenizer Total Tokens | Total tokens by vocabulary |
|
| 707 |
+
| N-gram Perplexity | Perplexity by n-gram size |
|
| 708 |
+
| N-gram Entropy | Entropy by n-gram size |
|
| 709 |
+
| N-gram Coverage | Top pattern coverage |
|
| 710 |
+
| N-gram Unique | Unique n-gram counts |
|
| 711 |
+
| Markov Entropy | Entropy by context size |
|
| 712 |
+
| Markov Branching | Branching factor by context |
|
| 713 |
+
| Markov Contexts | Unique context counts |
|
| 714 |
+
| Zipf's Law | Frequency-rank distribution with fit |
|
| 715 |
+
| Vocab Frequency | Word frequency distribution |
|
| 716 |
+
| Top 20 Words | Most frequent words |
|
| 717 |
+
| Vocab Coverage | Cumulative coverage curve |
|
| 718 |
+
| Embedding Isotropy | Vector space uniformity |
|
| 719 |
+
| Embedding Norms | Vector magnitude distribution |
|
| 720 |
+
| Embedding Similarity | Word similarity heatmap |
|
| 721 |
+
| Nearest Neighbors | Similar words for key terms |
|
| 722 |
+
| t-SNE Words | 2D word embedding visualization |
|
| 723 |
+
| t-SNE Sentences | 2D sentence embedding visualization |
|
| 724 |
+
| Position Encoding | Encoding method comparison |
|
| 725 |
+
| Model Sizes | Storage requirements |
|
| 726 |
+
| Performance Dashboard | Comprehensive performance overview |
|
| 727 |
+
|
| 728 |
+
---
|
| 729 |
+
## About This Project
|
| 730 |
+
|
| 731 |
+
### Data Source
|
| 732 |
+
|
| 733 |
+
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
|
| 734 |
+
|
| 735 |
+
### Project
|
| 736 |
+
|
| 737 |
+
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
|
| 738 |
+
|
| 739 |
+
### Maintainer
|
| 740 |
+
|
| 741 |
+
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
|
| 742 |
+
|
| 743 |
+
### Citation
|
| 744 |
+
|
| 745 |
+
If you use these models in your research, please cite:
|
| 746 |
+
|
| 747 |
+
```bibtex
|
| 748 |
+
@misc{wikilangs2025,
|
| 749 |
+
author = {Kamali, Omar},
|
| 750 |
+
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 751 |
+
year = {2025},
|
| 752 |
+
doi = {10.5281/zenodo.18073153},
|
| 753 |
+
publisher = {Zenodo},
|
| 754 |
+
url = {https://huggingface.co/wikilangs}
|
| 755 |
+
institution = {Omneity Labs}
|
| 756 |
+
}
|
| 757 |
+
```
|
| 758 |
+
|
| 759 |
+
### License
|
| 760 |
+
|
| 761 |
+
MIT License - Free for academic and commercial use.
|
| 762 |
+
|
| 763 |
+
### Links
|
| 764 |
+
|
| 765 |
+
- 🌐 Website: [wikilangs.org](https://wikilangs.org)
|
| 766 |
+
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 767 |
+
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 768 |
+
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 769 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 770 |
+
---
|
| 771 |
+
*Generated by Wikilangs Models Pipeline*
|
| 772 |
+
|
| 773 |
+
*Report Date: 2026-01-11 03:19:22*
|
models/embeddings/aligned/vls_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a16d88b3dad0ea6b022baf3376b06cf2ee5501e1c8398d6dd6160a007b81d86d
|
| 3 |
+
size 1055712307
|
models/embeddings/aligned/vls_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "vls", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/vls_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7946aad01d530eaab37961a320e0724db72a233e30131dc05a9d11ff1145b7ee
|
| 3 |
+
size 65664
|
models/embeddings/aligned/vls_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 9893,
|
| 7 |
+
"vocab_size": 30453
|
| 8 |
+
}
|
models/embeddings/aligned/vls_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d08626c784cc9f09460160ad9480808cf8b2adaad90a0369e6a9c95eb6b522c3
|
| 3 |
+
size 264324403
|
models/embeddings/aligned/vls_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "vls", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/vls_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fca715497a9769f9b772f5406ac59c62e81b57301c00acac539263977e52b964
|
| 3 |
+
size 4224
|
models/embeddings/aligned/vls_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 9893,
|
| 7 |
+
"vocab_size": 30453
|
| 8 |
+
}
|
models/embeddings/aligned/vls_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6dff8de6fe7e5d656f2089e04790b0d0a613025797d693b082d980dd4f0d09cc
|
| 3 |
+
size 528120371
|
models/embeddings/aligned/vls_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "vls", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/vls_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50e535a3ecca2069951e911c3634bd85d26f007416bfd9e77aba39ac83518086
|
| 3 |
+
size 16512
|
models/embeddings/aligned/vls_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 9893,
|
| 7 |
+
"vocab_size": 30453
|
| 8 |
+
}
|
models/embeddings/monolingual/vls_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a16d88b3dad0ea6b022baf3376b06cf2ee5501e1c8398d6dd6160a007b81d86d
|
| 3 |
+
size 1055712307
|
models/embeddings/monolingual/vls_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "vls", "dim": 128, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/vls_128d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 30453
|
| 16 |
+
}
|
models/embeddings/monolingual/vls_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d08626c784cc9f09460160ad9480808cf8b2adaad90a0369e6a9c95eb6b522c3
|
| 3 |
+
size 264324403
|
models/embeddings/monolingual/vls_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "vls", "dim": 32, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/vls_32d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 30453
|
| 16 |
+
}
|
models/embeddings/monolingual/vls_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6dff8de6fe7e5d656f2089e04790b0d0a613025797d693b082d980dd4f0d09cc
|
| 3 |
+
size 528120371
|
models/embeddings/monolingual/vls_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "vls", "dim": 64, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/vls_64d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 30453
|
| 16 |
+
}
|
models/subword_markov/vls_markov_ctx1_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40f272df5d2757f9135d06cd3f8ce471fe5c3960e276c63efedff973e6e62c75
|
| 3 |
+
size 60109
|
models/subword_markov/vls_markov_ctx1_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_contexts": 735,
|
| 6 |
+
"total_transitions": 11372630
|
| 7 |
+
}
|
models/subword_markov/vls_markov_ctx2_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:58af8831eafc05e6ae706f7c2f93fa0aa978e017b48c576fd2e09aa502aa7e82
|
| 3 |
+
size 413363
|
models/subword_markov/vls_markov_ctx2_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_contexts": 7322,
|
| 6 |
+
"total_transitions": 11364423
|
| 7 |
+
}
|
models/subword_markov/vls_markov_ctx3_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a52650e82817fc808de3673a0ad71b7cc0d0f52db3992c8b42b9fa1ac8db381
|
| 3 |
+
size 1777604
|
models/subword_markov/vls_markov_ctx3_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_contexts": 49306,
|
| 6 |
+
"total_transitions": 11356216
|
| 7 |
+
}
|
models/subword_markov/vls_markov_ctx4_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a2302448b5ca564bb5ff76dc86bb790e30ecf9689861ec0fdafef834619e189b
|
| 3 |
+
size 5615358
|
models/subword_markov/vls_markov_ctx4_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_contexts": 242577,
|
| 6 |
+
"total_transitions": 11348009
|
| 7 |
+
}
|
models/subword_ngram/vls_2gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e879305879cd49dfdd5bce2114ff57bd06971b83124b4bdd6e6230273dfcbec
|
| 3 |
+
size 45431
|
models/subword_ngram/vls_2gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_ngrams": 3241,
|
| 6 |
+
"total_ngrams": 11372630
|
| 7 |
+
}
|
models/subword_ngram/vls_3gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65d9abe29d9ed1c3a7973610b4aa57bc0a47d6cdcabb07af8afba64bab5f8f9f
|
| 3 |
+
size 345348
|
models/subword_ngram/vls_3gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_ngrams": 27863,
|
| 6 |
+
"total_ngrams": 11364423
|
| 7 |
+
}
|
models/subword_ngram/vls_4gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c84a531b58dbae83bcaf2fc503b790c2f3ea0225ce637702843e3db38fc6059
|
| 3 |
+
size 1718390
|
models/subword_ngram/vls_4gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_ngrams": 154373,
|
| 6 |
+
"total_ngrams": 11356216
|
| 7 |
+
}
|
models/subword_ngram/vls_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11460da07e4ef4efc4866ece3c859f48189409ac6a3aafb9b7961c774f7019c4
|
| 3 |
+
size 4818754
|
models/subword_ngram/vls_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "vls",
|
| 5 |
+
"unique_ngrams": 420619,
|
| 6 |
+
"total_ngrams": 11348009
|
| 7 |
+
}
|
models/tokenizer/vls_tokenizer_16k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dcae9d8b1a3436a7144a31c36136727f2615edc44e1db183957219bf7503e3ec
|
| 3 |
+
size 507341
|
models/tokenizer/vls_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/vls_tokenizer_32k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:778f56536daa8a1f4a3c3af0b3dcbd7cb0cdb69d4200732913ce914af3e7bcb8
|
| 3 |
+
size 787751
|
models/tokenizer/vls_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/vls_tokenizer_64k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8ddf229c890de1c87eb4d6f5f571bebc5e193bdfe7ed398f3e6e48282291b14
|
| 3 |
+
size 1359675
|
models/tokenizer/vls_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/vls_tokenizer_8k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02e2b54bcd26f73c986d0e5d2db6f87e97078770949ebc509303881ce3f4d694
|
| 3 |
+
size 371733
|
models/tokenizer/vls_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/vls_vocabulary.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb3adad43a26d23c3cde6638f6ce470962b9d2ce6c4300a55019d750f8f68fea
|
| 3 |
+
size 1229554
|
models/vocabulary/vls_vocabulary_metadata.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "vls",
|
| 3 |
+
"vocabulary_size": 68458,
|
| 4 |
+
"variant": "full",
|
| 5 |
+
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0871996823266832,
|
| 7 |
+
"coverage": {
|
| 8 |
+
"top_100": 0.3881661212361874,
|
| 9 |
+
"top_1000": 0.6019651928633046,
|
| 10 |
+
"top_5000": 0.7502671468280593,
|
| 11 |
+
"top_10000": 0.8108638797223097
|
| 12 |
+
},
|
| 13 |
+
"hapax_count": 90749,
|
| 14 |
+
"hapax_ratio": 0.5700063439421633,
|
| 15 |
+
"total_documents": 8207
|
| 16 |
+
}
|
| 17 |
+
}
|
models/word_markov/vls_markov_ctx1_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8ac714ebfbeee3103f3e0e479c2973328745d7cbc26ca19a77a41c884cda894a
|
| 3 |
+
size 8061714
|