Upload all models and assets for so (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +7 -0
- README.md +773 -0
- models/embeddings/aligned/so_128d.bin +3 -0
- models/embeddings/aligned/so_128d.meta.json +1 -0
- models/embeddings/aligned/so_128d.projection.npy +3 -0
- models/embeddings/aligned/so_128d_metadata.json +8 -0
- models/embeddings/aligned/so_32d.bin +3 -0
- models/embeddings/aligned/so_32d.meta.json +1 -0
- models/embeddings/aligned/so_32d.projection.npy +3 -0
- models/embeddings/aligned/so_32d_metadata.json +8 -0
- models/embeddings/aligned/so_64d.bin +3 -0
- models/embeddings/aligned/so_64d.meta.json +1 -0
- models/embeddings/aligned/so_64d.projection.npy +3 -0
- models/embeddings/aligned/so_64d_metadata.json +8 -0
- models/embeddings/monolingual/so_128d.bin +3 -0
- models/embeddings/monolingual/so_128d.meta.json +1 -0
- models/embeddings/monolingual/so_128d_metadata.json +16 -0
- models/embeddings/monolingual/so_32d.bin +3 -0
- models/embeddings/monolingual/so_32d.meta.json +1 -0
- models/embeddings/monolingual/so_32d_metadata.json +16 -0
- models/embeddings/monolingual/so_64d.bin +3 -0
- models/embeddings/monolingual/so_64d.meta.json +1 -0
- models/embeddings/monolingual/so_64d_metadata.json +16 -0
- models/subword_markov/so_markov_ctx1_subword.parquet +3 -0
- models/subword_markov/so_markov_ctx1_subword_metadata.json +7 -0
- models/subword_markov/so_markov_ctx2_subword.parquet +3 -0
- models/subword_markov/so_markov_ctx2_subword_metadata.json +7 -0
- models/subword_markov/so_markov_ctx3_subword.parquet +3 -0
- models/subword_markov/so_markov_ctx3_subword_metadata.json +7 -0
- models/subword_markov/so_markov_ctx4_subword.parquet +3 -0
- models/subword_markov/so_markov_ctx4_subword_metadata.json +7 -0
- models/subword_ngram/so_2gram_subword.parquet +3 -0
- models/subword_ngram/so_2gram_subword_metadata.json +7 -0
- models/subword_ngram/so_3gram_subword.parquet +3 -0
- models/subword_ngram/so_3gram_subword_metadata.json +7 -0
- models/subword_ngram/so_4gram_subword.parquet +3 -0
- models/subword_ngram/so_4gram_subword_metadata.json +7 -0
- models/subword_ngram/so_5gram_subword.parquet +3 -0
- models/subword_ngram/so_5gram_subword_metadata.json +7 -0
- models/tokenizer/so_tokenizer_16k.model +3 -0
- models/tokenizer/so_tokenizer_16k.vocab +0 -0
- models/tokenizer/so_tokenizer_32k.model +3 -0
- models/tokenizer/so_tokenizer_32k.vocab +0 -0
- models/tokenizer/so_tokenizer_64k.model +3 -0
- models/tokenizer/so_tokenizer_64k.vocab +0 -0
- models/tokenizer/so_tokenizer_8k.model +3 -0
- models/tokenizer/so_tokenizer_8k.vocab +0 -0
- models/vocabulary/so_vocabulary.parquet +3 -0
- models/vocabulary/so_vocabulary_metadata.json +17 -0
- models/word_markov/so_markov_ctx1_word.parquet +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
visualizations/embedding_similarity.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
visualizations/performance_dashboard.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: so
|
| 3 |
+
language_name: Somali
|
| 4 |
+
language_family: cushitic
|
| 5 |
+
tags:
|
| 6 |
+
- wikilangs
|
| 7 |
+
- nlp
|
| 8 |
+
- tokenizer
|
| 9 |
+
- embeddings
|
| 10 |
+
- n-gram
|
| 11 |
+
- markov
|
| 12 |
+
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
+
- monolingual
|
| 24 |
+
- family-cushitic
|
| 25 |
+
license: mit
|
| 26 |
+
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
+
datasets:
|
| 29 |
+
- omarkamali/wikipedia-monthly
|
| 30 |
+
dataset_info:
|
| 31 |
+
name: wikipedia-monthly
|
| 32 |
+
description: Monthly snapshots of Wikipedia articles across 300+ languages
|
| 33 |
+
metrics:
|
| 34 |
+
- name: best_compression_ratio
|
| 35 |
+
type: compression
|
| 36 |
+
value: 4.804
|
| 37 |
+
- name: best_isotropy
|
| 38 |
+
type: isotropy
|
| 39 |
+
value: 0.8622
|
| 40 |
+
- name: vocabulary_size
|
| 41 |
+
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-10
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
# Somali - Wikilangs Models
|
| 47 |
+
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
+
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Somali** Wikipedia data.
|
| 50 |
+
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
+
|
| 52 |
+
## 📋 Repository Contents
|
| 53 |
+
|
| 54 |
+
### Models & Assets
|
| 55 |
+
|
| 56 |
+
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
+
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
+
- Language Vocabulary
|
| 62 |
+
- Language Statistics
|
| 63 |
+
|
| 64 |
+

|
| 65 |
+
|
| 66 |
+
### Analysis and Evaluation
|
| 67 |
+
|
| 68 |
+
- [1. Tokenizer Evaluation](#1-tokenizer-evaluation)
|
| 69 |
+
- [2. N-gram Model Evaluation](#2-n-gram-model-evaluation)
|
| 70 |
+
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
+
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
+
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
+
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
+
- [Visualizations Index](#visualizations-index)
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
## 1. Tokenizer Evaluation
|
| 80 |
+
|
| 81 |
+

|
| 82 |
+
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
+
### Results
|
| 90 |
+
|
| 91 |
+
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
+
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.863x | 3.86 | 0.0648% | 951,080 |
|
| 94 |
+
| **16k** | 4.234x | 4.23 | 0.0710% | 867,649 |
|
| 95 |
+
| **32k** | 4.560x | 4.56 | 0.0765% | 805,556 |
|
| 96 |
+
| **64k** | 4.804x 🏆 | 4.80 | 0.0806% | 764,706 |
|
| 97 |
+
|
| 98 |
+
### Tokenization Examples
|
| 99 |
+
|
| 100 |
+
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
+
|
| 102 |
+
**Sample 1:** `Korean Broadcasting System (KBS) waa shabakad raadiye iyo telefishan Kuuriyada K...`
|
| 103 |
+
|
| 104 |
+
| Vocab | Tokens | Count |
|
| 105 |
+
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁kor ean ▁bro ad cas ting ▁system ▁( k bs ... (+12 more)` | 22 |
|
| 107 |
+
| 16k | `▁korean ▁broad cas ting ▁system ▁( k bs ) ▁waa ... (+10 more)` | 20 |
|
| 108 |
+
| 32k | `▁korean ▁broadcasting ▁system ▁( k bs ) ▁waa ▁shabakad ▁raadiye ... (+7 more)` | 17 |
|
| 109 |
+
| 64k | `▁korean ▁broadcasting ▁system ▁( kbs ) ▁waa ▁shabakad ▁raadiye ▁iyo ... (+6 more)` | 16 |
|
| 110 |
+
|
| 111 |
+
**Sample 2:** `Universidade Federal do Recôncavo da Bahia (UFRB) waxa ay ku taala magaalada Cru...`
|
| 112 |
+
|
| 113 |
+
| Vocab | Tokens | Count |
|
| 114 |
+
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁univer sida de ▁federal ▁do ▁rec ô n ca vo ... (+32 more)` | 42 |
|
| 116 |
+
| 16k | `▁univer sida de ▁federal ▁do ▁rec ô n ca vo ... (+28 more)` | 38 |
|
| 117 |
+
| 32k | `▁universidade ▁federal ▁do ▁rec ô n ca vo ▁da ▁bahia ... (+21 more)` | 31 |
|
| 118 |
+
| 64k | `▁universidade ▁federal ▁do ▁rec ô n ca vo ▁da ▁bahia ... (+20 more)` | 30 |
|
| 119 |
+
|
| 120 |
+
**Sample 3:** `Camar bin Hishaam al-Makhzuumi "abuu jahal" waa gaal weyn oo cadaw ku ahaa islaa...`
|
| 121 |
+
|
| 122 |
+
| Vocab | Tokens | Count |
|
| 123 |
+
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁cam ar ▁bin ▁h ish aam ▁al - ma kh ... (+19 more)` | 29 |
|
| 125 |
+
| 16k | `▁camar ▁bin ▁hishaam ▁al - ma kh z uu mi ... (+15 more)` | 25 |
|
| 126 |
+
| 32k | `▁camar ▁bin ▁hishaam ▁al - ma kh z uu mi ... (+13 more)` | 23 |
|
| 127 |
+
| 64k | `▁camar ▁bin ▁hishaam ▁al - makh z uu mi ▁" ... (+11 more)` | 21 |
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
### Key Findings
|
| 131 |
+
|
| 132 |
+
- **Best Compression:** 64k achieves 4.804x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0648% unknown tokens
|
| 134 |
+
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
+
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
## 2. N-gram Model Evaluation
|
| 139 |
+
|
| 140 |
+

|
| 141 |
+
|
| 142 |
+

|
| 143 |
+
|
| 144 |
+

|
| 145 |
+
|
| 146 |
+
### Results
|
| 147 |
+
|
| 148 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 18,941 | 14.21 | 69,253 | 15.3% | 34.5% |
|
| 151 |
+
| **2-gram** | Subword | 235 🏆 | 7.88 | 6,710 | 73.0% | 98.7% |
|
| 152 |
+
| **3-gram** | Word | 47,961 | 15.55 | 102,689 | 7.8% | 19.8% |
|
| 153 |
+
| **3-gram** | Subword | 1,924 | 10.91 | 42,349 | 30.9% | 75.9% |
|
| 154 |
+
| **4-gram** | Word | 131,970 | 17.01 | 198,378 | 3.3% | 9.4% |
|
| 155 |
+
| **4-gram** | Subword | 10,789 | 13.40 | 193,486 | 14.2% | 43.9% |
|
| 156 |
+
| **5-gram** | Word | 119,528 | 16.87 | 156,118 | 2.1% | 7.4% |
|
| 157 |
+
| **5-gram** | Subword | 39,683 | 15.28 | 478,214 | 7.8% | 26.2% |
|
| 158 |
+
|
| 159 |
+
### Top 5 N-grams by Size
|
| 160 |
+
|
| 161 |
+
**2-grams (Word):**
|
| 162 |
+
|
| 163 |
+
| Rank | N-gram | Count |
|
| 164 |
+
|------|--------|-------|
|
| 165 |
+
| 1 | `ka mid` | 9,808 |
|
| 166 |
+
| 2 | `ah oo` | 8,183 |
|
| 167 |
+
| 3 | `mid ah` | 8,058 |
|
| 168 |
+
| 4 | `waxa uu` | 7,173 |
|
| 169 |
+
| 5 | `sidoo kale` | 6,685 |
|
| 170 |
+
|
| 171 |
+
**3-grams (Word):**
|
| 172 |
+
|
| 173 |
+
| Rank | N-gram | Count |
|
| 174 |
+
|------|--------|-------|
|
| 175 |
+
| 1 | `ka mid ah` | 7,046 |
|
| 176 |
+
| 2 | `oo ay ku` | 1,827 |
|
| 177 |
+
| 3 | `waxaa ka mid` | 1,557 |
|
| 178 |
+
| 4 | `mid ka mid` | 1,546 |
|
| 179 |
+
| 5 | `ka dib markii` | 1,252 |
|
| 180 |
+
|
| 181 |
+
**4-grams (Word):**
|
| 182 |
+
|
| 183 |
+
| Rank | N-gram | Count |
|
| 184 |
+
|------|--------|-------|
|
| 185 |
+
| 1 | `mid ka mid ah` | 1,525 |
|
| 186 |
+
| 2 | `waxaa ka mid ah` | 1,268 |
|
| 187 |
+
| 3 | `oo ay ku jiraan` | 939 |
|
| 188 |
+
| 4 | `oo ka mid ah` | 887 |
|
| 189 |
+
| 5 | `si kastaba ha ahaatee` | 800 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `waa mid ka mid ah` | 381 |
|
| 196 |
+
| 2 | `badan oo ka mid ah` | 232 |
|
| 197 |
+
| 3 | `oo ay ka mid yihiin` | 222 |
|
| 198 |
+
| 4 | `kani waa maqaal ku saabsan` | 204 |
|
| 199 |
+
| 5 | `ah oo ay ku jiraan` | 193 |
|
| 200 |
+
|
| 201 |
+
**2-grams (Subword):**
|
| 202 |
+
|
| 203 |
+
| Rank | N-gram | Count |
|
| 204 |
+
|------|--------|-------|
|
| 205 |
+
| 1 | `a _` | 785,129 |
|
| 206 |
+
| 2 | `a a` | 551,833 |
|
| 207 |
+
| 3 | `a y` | 314,106 |
|
| 208 |
+
| 4 | `d a` | 311,005 |
|
| 209 |
+
| 5 | `a d` | 306,639 |
|
| 210 |
+
|
| 211 |
+
**3-grams (Subword):**
|
| 212 |
+
|
| 213 |
+
| Rank | N-gram | Count |
|
| 214 |
+
|------|--------|-------|
|
| 215 |
+
| 1 | `k a _` | 191,283 |
|
| 216 |
+
| 2 | `a y _` | 182,234 |
|
| 217 |
+
| 3 | `_ w a` | 154,920 |
|
| 218 |
+
| 4 | `a d a` | 139,571 |
|
| 219 |
+
| 5 | `o o _` | 132,027 |
|
| 220 |
+
|
| 221 |
+
**4-grams (Subword):**
|
| 222 |
+
|
| 223 |
+
| Rank | N-gram | Count |
|
| 224 |
+
|------|--------|-------|
|
| 225 |
+
| 1 | `_ w a x` | 83,580 |
|
| 226 |
+
| 2 | `_ o o _` | 75,106 |
|
| 227 |
+
| 3 | `w a x a` | 72,968 |
|
| 228 |
+
| 4 | `a d a _` | 69,414 |
|
| 229 |
+
| 5 | `i y o _` | 65,977 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ w a x a` | 71,618 |
|
| 236 |
+
| 2 | `_ i y o _` | 60,073 |
|
| 237 |
+
| 3 | `w a x a a` | 28,120 |
|
| 238 |
+
| 4 | `w a x a y` | 27,648 |
|
| 239 |
+
| 5 | `a x a y _` | 26,222 |
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
### Key Findings
|
| 243 |
+
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 235
|
| 245 |
+
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~26% of corpus
|
| 247 |
+
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
+
|
| 249 |
+
---
|
| 250 |
+
## 3. Markov Chain Evaluation
|
| 251 |
+
|
| 252 |
+

|
| 253 |
+
|
| 254 |
+

|
| 255 |
+
|
| 256 |
+

|
| 257 |
+
|
| 258 |
+
### Results
|
| 259 |
+
|
| 260 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.8636 | 1.820 | 6.47 | 196,962 | 13.6% |
|
| 263 |
+
| **1** | Subword | 1.0789 | 2.112 | 6.98 | 3,275 | 0.0% |
|
| 264 |
+
| **2** | Word | 0.2528 | 1.192 | 1.66 | 1,269,511 | 74.7% |
|
| 265 |
+
| **2** | Subword | 0.7113 | 1.637 | 4.28 | 22,823 | 28.9% |
|
| 266 |
+
| **3** | Word | 0.0936 | 1.067 | 1.18 | 2,096,777 | 90.6% |
|
| 267 |
+
| **3** | Subword | 0.6878 | 1.611 | 3.58 | 97,500 | 31.2% |
|
| 268 |
+
| **4** | Word | 0.0360 🏆 | 1.025 | 1.06 | 2,465,103 | 96.4% |
|
| 269 |
+
| **4** | Subword | 0.5986 | 1.514 | 2.75 | 349,170 | 40.1% |
|
| 270 |
+
|
| 271 |
+
### Generated Text Samples (Word-based)
|
| 272 |
+
|
| 273 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 274 |
+
|
| 275 |
+
**Context Size 1:**
|
| 276 |
+
|
| 277 |
+
1. `oo ahaa 165 595 in ay direen askar guutaale abadiaziiz maxamuud yaxye bin cumeyr si walboo`
|
| 278 |
+
2. `ee dibedda soomaaliya siyaasadda siyaasadda codsadayaasha maxaliga ah oo dhanna guurti la silciyey s...`
|
| 279 |
+
3. `iyo kuwa la dhaho wacaysmoge degmada dayniile muqdisho guddoomiyaha ururka waxaa lala yeeshay warbaa...`
|
| 280 |
+
|
| 281 |
+
**Context Size 2:**
|
| 282 |
+
|
| 283 |
+
1. `ka mid yihiin marc jacobs hervé léger hugo boss giorgio armani beauty 3 xilli ciyaareed ee royal`
|
| 284 |
+
2. `ah oo la wadaago 70 80 in wakhtigaas ku dhawaaqay inay yihiin qaybo ka mida gobolka jarar`
|
| 285 |
+
3. `mid ah 1dii janaayo bisha janaayo musk wuxuu ku laabtay magrib wuxuu ka kooban yihiin lix milyan`
|
| 286 |
+
|
| 287 |
+
**Context Size 3:**
|
| 288 |
+
|
| 289 |
+
1. `ka mid ah ciidankiisa waran sumeysan ibni cumar oo qabay walaashiis safiya bniti cubeyd ayuu u qoray...`
|
| 290 |
+
2. `oo ay ku jiraan majaladda sheekada dodge artful vinyl poetry prairie schooner iyo rhino gabayadeeda ...`
|
| 291 |
+
3. `waxaa ka mid ah geela maraykanka ah oo heesta kana shaqeeysa filimada hindiga waxay ka soo muuqatay ...`
|
| 292 |
+
|
| 293 |
+
**Context Size 4:**
|
| 294 |
+
|
| 295 |
+
1. `mid ka mid ah kuwa ugu bandhiga badan hollywood spoto p 221 churchwell pp 61 65 lev p 168`
|
| 296 |
+
2. `waxaa ka mid ah sheikh ibraahim yalale oo xilka xildhibannimo hayay inta u dhexeysay doorkii uu shie...`
|
| 297 |
+
3. `oo ay ku jiraan ashoka arab world africa action sinnaanta hadda golaha la talinta ee sanduuqa caalam...`
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
### Generated Text Samples (Subword-based)
|
| 301 |
+
|
| 302 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 303 |
+
|
| 304 |
+
**Context Size 1:**
|
| 305 |
+
|
| 306 |
+
1. `aminun_d_btoraqa`
|
| 307 |
+
2. `_u_da_caxigleeri`
|
| 308 |
+
3. `ita_o_gadid_b_1.`
|
| 309 |
+
|
| 310 |
+
**Context Size 2:**
|
| 311 |
+
|
| 312 |
+
1. `a_gooxdan_dagu_ta`
|
| 313 |
+
2. `aadkally_gobad_we`
|
| 314 |
+
3. `aysabiiyo_maga_sa`
|
| 315 |
+
|
| 316 |
+
**Context Size 3:**
|
| 317 |
+
|
| 318 |
+
1. `ka_ka_ay_qur’aano_`
|
| 319 |
+
2. `ay_waxay_damaada_s`
|
| 320 |
+
3. `_waqooyiga_dhaba._`
|
| 321 |
+
|
| 322 |
+
**Context Size 4:**
|
| 323 |
+
|
| 324 |
+
1. `_wax_ka_socota_waxa`
|
| 325 |
+
2. `_oo_ka_oo_maamulka_`
|
| 326 |
+
3. `waxay_u_aroor_ayaa_`
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
### Key Findings
|
| 330 |
+
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 96.4% predictability
|
| 332 |
+
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (349,170 contexts)
|
| 334 |
+
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
+
## 4. Vocabulary Analysis
|
| 338 |
+
|
| 339 |
+

|
| 340 |
+
|
| 341 |
+

|
| 342 |
+
|
| 343 |
+

|
| 344 |
+
|
| 345 |
+
### Statistics
|
| 346 |
+
|
| 347 |
+
| Metric | Value |
|
| 348 |
+
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 88,887 |
|
| 350 |
+
| Total Tokens | 2,839,359 |
|
| 351 |
+
| Mean Frequency | 31.94 |
|
| 352 |
+
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 606.37 |
|
| 354 |
+
|
| 355 |
+
### Most Common Words
|
| 356 |
+
|
| 357 |
+
| Rank | Word | Frequency |
|
| 358 |
+
|------|------|-----------|
|
| 359 |
+
| 1 | oo | 75,907 |
|
| 360 |
+
| 2 | ee | 62,003 |
|
| 361 |
+
| 3 | iyo | 60,594 |
|
| 362 |
+
| 4 | ah | 59,190 |
|
| 363 |
+
| 5 | ka | 58,938 |
|
| 364 |
+
| 6 | ku | 47,129 |
|
| 365 |
+
| 7 | u | 33,969 |
|
| 366 |
+
| 8 | ay | 27,872 |
|
| 367 |
+
| 9 | la | 26,142 |
|
| 368 |
+
| 10 | waxay | 24,810 |
|
| 369 |
+
|
| 370 |
+
### Least Common Words (from vocabulary)
|
| 371 |
+
|
| 372 |
+
| Rank | Word | Frequency |
|
| 373 |
+
|------|------|-----------|
|
| 374 |
+
| 1 | abdulsalam | 2 |
|
| 375 |
+
| 2 | jamilu | 2 |
|
| 376 |
+
| 3 | ruggedman | 2 |
|
| 377 |
+
| 4 | rraz | 2 |
|
| 378 |
+
| 5 | inetimi | 2 |
|
| 379 |
+
| 6 | odon | 2 |
|
| 380 |
+
| 7 | eedris | 2 |
|
| 381 |
+
| 8 | foston | 2 |
|
| 382 |
+
| 9 | lanky | 2 |
|
| 383 |
+
| 10 | rhythmz | 2 |
|
| 384 |
+
|
| 385 |
+
### Zipf's Law Analysis
|
| 386 |
+
|
| 387 |
+
| Metric | Value |
|
| 388 |
+
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0134 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.995365 |
|
| 391 |
+
| Adherence Quality | **excellent** |
|
| 392 |
+
|
| 393 |
+
### Coverage Analysis
|
| 394 |
+
|
| 395 |
+
| Top N Words | Coverage |
|
| 396 |
+
|-------------|----------|
|
| 397 |
+
| Top 100 | 37.0% |
|
| 398 |
+
| Top 1,000 | 59.8% |
|
| 399 |
+
| Top 5,000 | 77.9% |
|
| 400 |
+
| Top 10,000 | 84.9% |
|
| 401 |
+
|
| 402 |
+
### Key Findings
|
| 403 |
+
|
| 404 |
+
- **Zipf Compliance:** R²=0.9954 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 37.0% of corpus
|
| 406 |
+
- **Long Tail:** 78,887 words needed for remaining 15.1% coverage
|
| 407 |
+
|
| 408 |
+
---
|
| 409 |
+
## 5. Word Embeddings Evaluation
|
| 410 |
+
|
| 411 |
+

|
| 412 |
+
|
| 413 |
+

|
| 414 |
+
|
| 415 |
+

|
| 416 |
+
|
| 417 |
+

|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
### 5.1 Cross-Lingual Alignment
|
| 421 |
+
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
### 5.2 Model Comparison
|
| 428 |
+
|
| 429 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8622 | 0.3506 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8393 | 0.2541 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.8150 | 0.1899 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8622 🏆 | 0.3423 | 0.0460 | 0.2720 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8393 | 0.2570 | 0.0880 | 0.3940 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.8150 | 0.1956 | 0.1480 | 0.4820 |
|
| 437 |
+
|
| 438 |
+
### Key Findings
|
| 439 |
+
|
| 440 |
+
- **Best Isotropy:** aligned_32d with 0.8622 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2649. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 14.8% R@1 in cross-lingual retrieval.
|
| 443 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
+
|
| 445 |
+
---
|
| 446 |
+
## 6. Morphological Analysis (Experimental)
|
| 447 |
+
|
| 448 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
+
|
| 450 |
+
### 6.1 Productivity & Complexity
|
| 451 |
+
|
| 452 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
+
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.717** | Low formulaic content | - |
|
| 456 |
+
|
| 457 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
+
|
| 459 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 460 |
+
|
| 461 |
+
#### Productive Prefixes
|
| 462 |
+
| Prefix | Examples |
|
| 463 |
+
|--------|----------|
|
| 464 |
+
| `-a` | ankka, a6, aruuriyeen |
|
| 465 |
+
| `-s` | simay, sharab, sucuudiyyah |
|
| 466 |
+
| `-ma` | markiisii, masaxaya, markaas |
|
| 467 |
+
| `-ال` | التربية, المستطاب, الخندق |
|
| 468 |
+
| `-m` | markiisii, masaxaya, muxadis |
|
| 469 |
+
| `-d` | dayi, dhadhanku, doobka |
|
| 470 |
+
| `-b` | beyoncés, buuloburde, bulshadan |
|
| 471 |
+
| `-ba` | badbaadiyo, baasna, baangad |
|
| 472 |
+
|
| 473 |
+
#### Productive Suffixes
|
| 474 |
+
| Suffix | Examples |
|
| 475 |
+
|--------|----------|
|
| 476 |
+
| `-a` | tula, qaahira, masaxaya |
|
| 477 |
+
| `-n` | kirsten, concepción, nasreen |
|
| 478 |
+
| `-da` | cabbirkeeda, metelida, hijrada |
|
| 479 |
+
| `-i` | markiisii, lari, dayi |
|
| 480 |
+
| `-an` | bulshadan, laaban, aaadan |
|
| 481 |
+
| `-o` | istuudiyoo, dhaqasho, amico |
|
| 482 |
+
| `-y` | yaqanay, simay, wacdiyay |
|
| 483 |
+
| `-ii` | markiisii, halkoodii, khaliifkii |
|
| 484 |
+
|
| 485 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 486 |
+
|
| 487 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 488 |
+
|
| 489 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 490 |
+
|------|----------|------------------|----------|
|
| 491 |
+
| `ooyi` | 2.19x | 64 contexts | mooyi, woqooyi, waqooyi |
|
| 492 |
+
| `iisa` | 2.08x | 69 contexts | hiisa, xiisa, ciisa |
|
| 493 |
+
| `aank` | 1.83x | 108 contexts | aanku, aanka, baanka |
|
| 494 |
+
| `yaas` | 2.16x | 47 contexts | iyaas, yaase, ilyaas |
|
| 495 |
+
| `agaa` | 1.76x | 114 contexts | dagaa, lagaa, tagaa |
|
| 496 |
+
| `eeya` | 1.68x | 136 contexts | geeya, geeyay, beeyay |
|
| 497 |
+
| `eeda` | 1.99x | 61 contexts | eeday, teeda, keeda |
|
| 498 |
+
| `aara` | 1.49x | 206 contexts | aaran, baara, faara |
|
| 499 |
+
| `alka` | 1.69x | 109 contexts | halka, jalka, xalka |
|
| 500 |
+
| `soom` | 2.59x | 20 contexts | soomi, soomo, sooma |
|
| 501 |
+
| `ooma` | 1.94x | 57 contexts | rooma, looma, nooma |
|
| 502 |
+
| `rkii` | 1.76x | 72 contexts | uurkii, jirkii, markii |
|
| 503 |
+
|
| 504 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 505 |
+
|
| 506 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 507 |
+
|
| 508 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 509 |
+
|--------|--------|-----------|----------|
|
| 510 |
+
| `-d` | `-a` | 218 words | dhinaciisa, dhigma |
|
| 511 |
+
| `-s` | `-a` | 172 words | shaqaynaya, sperma |
|
| 512 |
+
| `-a` | `-a` | 129 words | arrintiina, aadaya |
|
| 513 |
+
| `-b` | `-a` | 125 words | bataaxa, balaraba |
|
| 514 |
+
| `-k` | `-a` | 123 words | kaashanaysaa, koofiga |
|
| 515 |
+
| `-ma` | `-a` | 99 words | majaajiliistayaasha, maqaarka |
|
| 516 |
+
| `-d` | `-n` | 90 words | dhacsan, daadejin |
|
| 517 |
+
| `-s` | `-n` | 70 words | soojireen, suuxdin |
|
| 518 |
+
| `-d` | `-o` | 69 words | dhawaaqo, duqeymo |
|
| 519 |
+
| `-m` | `-a` | 68 words | midigta, moodaa |
|
| 520 |
+
|
| 521 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 522 |
+
|
| 523 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 524 |
+
|
| 525 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 526 |
+
|------|-----------------|------------|------|
|
| 527 |
+
| martigeliyaan | **`martigeliy-a-an`** | 7.5 | `a` |
|
| 528 |
+
| fadhiistaa | **`fadhiist-a-a`** | 7.5 | `a` |
|
| 529 |
+
| diiddanaa | **`diiddan-a-a`** | 7.5 | `a` |
|
| 530 |
+
| wakiiladu | **`wakiil-a-du`** | 7.5 | `a` |
|
| 531 |
+
| itoobiyada | **`itoobiy-a-da`** | 7.5 | `a` |
|
| 532 |
+
| amxaarada | **`amxaar-a-da`** | 7.5 | `a` |
|
| 533 |
+
| nimankani | **`niman-ka-ni`** | 7.5 | `ka` |
|
| 534 |
+
| filosofiyada | **`filosofiy-a-da`** | 7.5 | `a` |
|
| 535 |
+
| afduubeen | **`afduub-e-en`** | 7.5 | `e` |
|
| 536 |
+
| ilaahaaga | **`ilaaha-a-ga`** | 7.5 | `a` |
|
| 537 |
+
| aqoontaas | **`aqoonta-a-s`** | 7.5 | `a` |
|
| 538 |
+
| kumbuyuutar | **`kumbuyuut-a-r`** | 7.5 | `a` |
|
| 539 |
+
| ceelxagar | **`ceelxag-a-r`** | 7.5 | `a` |
|
| 540 |
+
| hadalkisii | **`hadalki-s-ii`** | 7.5 | `s` |
|
| 541 |
+
| diidnimada | **`diidnim-a-da`** | 7.5 | `a` |
|
| 542 |
+
|
| 543 |
+
### 6.6 Linguistic Interpretation
|
| 544 |
+
|
| 545 |
+
> **Automated Insight:**
|
| 546 |
+
The language Somali shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 547 |
+
|
| 548 |
+
---
|
| 549 |
+
## 7. Summary & Recommendations
|
| 550 |
+
|
| 551 |
+

|
| 552 |
+
|
| 553 |
+
### Production Recommendations
|
| 554 |
+
|
| 555 |
+
| Component | Recommended | Rationale |
|
| 556 |
+
|-----------|-------------|-----------|
|
| 557 |
+
| Tokenizer | **64k BPE** | Best compression (4.80x) |
|
| 558 |
+
| N-gram | **2-gram** | Lowest perplexity (235) |
|
| 559 |
+
| Markov | **Context-4** | Highest predictability (96.4%) |
|
| 560 |
+
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
---
|
| 564 |
+
## Appendix: Metrics Glossary & Interpretation Guide
|
| 565 |
+
|
| 566 |
+
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
|
| 567 |
+
|
| 568 |
+
### Tokenizer Metrics
|
| 569 |
+
|
| 570 |
+
**Compression Ratio**
|
| 571 |
+
> *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
|
| 572 |
+
>
|
| 573 |
+
> *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
|
| 574 |
+
>
|
| 575 |
+
> *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
|
| 576 |
+
|
| 577 |
+
**Average Token Length (Fertility)**
|
| 578 |
+
> *Definition:* Mean number of characters per token produced by the tokenizer.
|
| 579 |
+
>
|
| 580 |
+
> *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
|
| 581 |
+
>
|
| 582 |
+
> *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
|
| 583 |
+
|
| 584 |
+
**Unknown Token Rate (OOV Rate)**
|
| 585 |
+
> *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
|
| 586 |
+
>
|
| 587 |
+
> *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
|
| 588 |
+
>
|
| 589 |
+
> *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
|
| 590 |
+
|
| 591 |
+
### N-gram Model Metrics
|
| 592 |
+
|
| 593 |
+
**Perplexity**
|
| 594 |
+
> *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
|
| 595 |
+
>
|
| 596 |
+
> *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
|
| 597 |
+
>
|
| 598 |
+
> *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
|
| 599 |
+
|
| 600 |
+
**Entropy**
|
| 601 |
+
> *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
|
| 602 |
+
>
|
| 603 |
+
> *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
|
| 604 |
+
>
|
| 605 |
+
> *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
|
| 606 |
+
|
| 607 |
+
**Coverage (Top-K)**
|
| 608 |
+
> *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams.
|
| 609 |
+
>
|
| 610 |
+
> *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
|
| 611 |
+
>
|
| 612 |
+
> *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
|
| 613 |
+
|
| 614 |
+
### Markov Chain Metrics
|
| 615 |
+
|
| 616 |
+
**Average Entropy**
|
| 617 |
+
> *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
|
| 618 |
+
>
|
| 619 |
+
> *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
|
| 620 |
+
>
|
| 621 |
+
> *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
|
| 622 |
+
|
| 623 |
+
**Branching Factor**
|
| 624 |
+
> *Definition:* Average number of unique next tokens observed for each context.
|
| 625 |
+
>
|
| 626 |
+
> *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
|
| 627 |
+
>
|
| 628 |
+
> *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
|
| 629 |
+
|
| 630 |
+
**Predictability**
|
| 631 |
+
> *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.
|
| 632 |
+
>
|
| 633 |
+
> *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
|
| 634 |
+
>
|
| 635 |
+
> *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
|
| 636 |
+
|
| 637 |
+
### Vocabulary & Zipf's Law Metrics
|
| 638 |
+
|
| 639 |
+
**Zipf's Coefficient**
|
| 640 |
+
> *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
|
| 641 |
+
>
|
| 642 |
+
> *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
|
| 643 |
+
>
|
| 644 |
+
> *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
|
| 645 |
+
|
| 646 |
+
**R² (Coefficient of Determination)**
|
| 647 |
+
> *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
|
| 648 |
+
>
|
| 649 |
+
> *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
|
| 650 |
+
>
|
| 651 |
+
> *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
|
| 652 |
+
|
| 653 |
+
**Vocabulary Coverage**
|
| 654 |
+
> *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words.
|
| 655 |
+
>
|
| 656 |
+
> *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
|
| 657 |
+
>
|
| 658 |
+
> *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
|
| 659 |
+
|
| 660 |
+
### Word Embedding Metrics
|
| 661 |
+
|
| 662 |
+
**Isotropy**
|
| 663 |
+
> *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
|
| 664 |
+
>
|
| 665 |
+
> *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
|
| 666 |
+
>
|
| 667 |
+
> *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
|
| 668 |
+
|
| 669 |
+
**Average Norm**
|
| 670 |
+
> *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space.
|
| 671 |
+
>
|
| 672 |
+
> *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
|
| 673 |
+
>
|
| 674 |
+
> *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
|
| 675 |
+
|
| 676 |
+
**Cosine Similarity**
|
| 677 |
+
> *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
|
| 678 |
+
>
|
| 679 |
+
> *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
|
| 680 |
+
>
|
| 681 |
+
> *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
|
| 682 |
+
|
| 683 |
+
**t-SNE Visualization**
|
| 684 |
+
> *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
|
| 685 |
+
>
|
| 686 |
+
> *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
|
| 687 |
+
>
|
| 688 |
+
> *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
|
| 689 |
+
|
| 690 |
+
### General Interpretation Guidelines
|
| 691 |
+
|
| 692 |
+
1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
|
| 693 |
+
2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
|
| 694 |
+
3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
|
| 695 |
+
4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
|
| 696 |
+
5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
### Visualizations Index
|
| 700 |
+
|
| 701 |
+
| Visualization | Description |
|
| 702 |
+
|---------------|-------------|
|
| 703 |
+
| Tokenizer Compression | Compression ratios by vocabulary size |
|
| 704 |
+
| Tokenizer Fertility | Average token length by vocabulary |
|
| 705 |
+
| Tokenizer OOV | Unknown token rates |
|
| 706 |
+
| Tokenizer Total Tokens | Total tokens by vocabulary |
|
| 707 |
+
| N-gram Perplexity | Perplexity by n-gram size |
|
| 708 |
+
| N-gram Entropy | Entropy by n-gram size |
|
| 709 |
+
| N-gram Coverage | Top pattern coverage |
|
| 710 |
+
| N-gram Unique | Unique n-gram counts |
|
| 711 |
+
| Markov Entropy | Entropy by context size |
|
| 712 |
+
| Markov Branching | Branching factor by context |
|
| 713 |
+
| Markov Contexts | Unique context counts |
|
| 714 |
+
| Zipf's Law | Frequency-rank distribution with fit |
|
| 715 |
+
| Vocab Frequency | Word frequency distribution |
|
| 716 |
+
| Top 20 Words | Most frequent words |
|
| 717 |
+
| Vocab Coverage | Cumulative coverage curve |
|
| 718 |
+
| Embedding Isotropy | Vector space uniformity |
|
| 719 |
+
| Embedding Norms | Vector magnitude distribution |
|
| 720 |
+
| Embedding Similarity | Word similarity heatmap |
|
| 721 |
+
| Nearest Neighbors | Similar words for key terms |
|
| 722 |
+
| t-SNE Words | 2D word embedding visualization |
|
| 723 |
+
| t-SNE Sentences | 2D sentence embedding visualization |
|
| 724 |
+
| Position Encoding | Encoding method comparison |
|
| 725 |
+
| Model Sizes | Storage requirements |
|
| 726 |
+
| Performance Dashboard | Comprehensive performance overview |
|
| 727 |
+
|
| 728 |
+
---
|
| 729 |
+
## About This Project
|
| 730 |
+
|
| 731 |
+
### Data Source
|
| 732 |
+
|
| 733 |
+
Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages.
|
| 734 |
+
|
| 735 |
+
### Project
|
| 736 |
+
|
| 737 |
+
A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language.
|
| 738 |
+
|
| 739 |
+
### Maintainer
|
| 740 |
+
|
| 741 |
+
[Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com)
|
| 742 |
+
|
| 743 |
+
### Citation
|
| 744 |
+
|
| 745 |
+
If you use these models in your research, please cite:
|
| 746 |
+
|
| 747 |
+
```bibtex
|
| 748 |
+
@misc{wikilangs2025,
|
| 749 |
+
author = {Kamali, Omar},
|
| 750 |
+
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 751 |
+
year = {2025},
|
| 752 |
+
doi = {10.5281/zenodo.18073153},
|
| 753 |
+
publisher = {Zenodo},
|
| 754 |
+
url = {https://huggingface.co/wikilangs}
|
| 755 |
+
institution = {Omneity Labs}
|
| 756 |
+
}
|
| 757 |
+
```
|
| 758 |
+
|
| 759 |
+
### License
|
| 760 |
+
|
| 761 |
+
MIT License - Free for academic and commercial use.
|
| 762 |
+
|
| 763 |
+
### Links
|
| 764 |
+
|
| 765 |
+
- 🌐 Website: [wikilangs.org](https://wikilangs.org)
|
| 766 |
+
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 767 |
+
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 768 |
+
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 769 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 770 |
+
---
|
| 771 |
+
*Generated by Wikilangs Models Pipeline*
|
| 772 |
+
|
| 773 |
+
*Report Date: 2026-01-10 21:47:10*
|
models/embeddings/aligned/so_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a17c94bec94bafdbde1bcd4bfefcebe29d8323dcb27adee2ca45b27d3b9215c1
|
| 3 |
+
size 1072128990
|
models/embeddings/aligned/so_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "so", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/so_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5d9b105ac3ee4d16d4da68f477db821ece21fab55f020668f0ecf4e2b5039ce
|
| 3 |
+
size 65664
|
models/embeddings/aligned/so_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 12251,
|
| 7 |
+
"vocab_size": 46219
|
| 8 |
+
}
|
models/embeddings/aligned/so_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2c89f0e3c2d749fa91dd53b971e5a262c018cba4659eb43941f1775e4277796
|
| 3 |
+
size 268632798
|
models/embeddings/aligned/so_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "so", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/so_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:647032c0f97ce1e6dfe4073852ffcbc17a2c9d4ea1083d55916bf48dbe24aaf7
|
| 3 |
+
size 4224
|
models/embeddings/aligned/so_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 12251,
|
| 7 |
+
"vocab_size": 46219
|
| 8 |
+
}
|
models/embeddings/aligned/so_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:748ea5274dfd4bc23bd4de597ec141ba1beb5fe4a4551f78c9106d342f5e5457
|
| 3 |
+
size 536464862
|
models/embeddings/aligned/so_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "so", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/so_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc8e258eeea359a4b4359643bdfc5b28b6f53779e273e512c11edcaae2f19cae
|
| 3 |
+
size 16512
|
models/embeddings/aligned/so_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 12251,
|
| 7 |
+
"vocab_size": 46219
|
| 8 |
+
}
|
models/embeddings/monolingual/so_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a17c94bec94bafdbde1bcd4bfefcebe29d8323dcb27adee2ca45b27d3b9215c1
|
| 3 |
+
size 1072128990
|
models/embeddings/monolingual/so_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "so", "dim": 128, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/so_128d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 46219
|
| 16 |
+
}
|
models/embeddings/monolingual/so_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2c89f0e3c2d749fa91dd53b971e5a262c018cba4659eb43941f1775e4277796
|
| 3 |
+
size 268632798
|
models/embeddings/monolingual/so_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "so", "dim": 32, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/so_32d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 46219
|
| 16 |
+
}
|
models/embeddings/monolingual/so_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:748ea5274dfd4bc23bd4de597ec141ba1beb5fe4a4551f78c9106d342f5e5457
|
| 3 |
+
size 536464862
|
models/embeddings/monolingual/so_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "so", "dim": 64, "max_seq_len": 512, "is_aligned": false}
|
models/embeddings/monolingual/so_64d_metadata.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "monolingual",
|
| 5 |
+
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
+
"min_count": 5,
|
| 8 |
+
"window": 5,
|
| 9 |
+
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64,
|
| 13 |
+
"threads": 5
|
| 14 |
+
},
|
| 15 |
+
"vocab_size": 46219
|
| 16 |
+
}
|
models/subword_markov/so_markov_ctx1_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:554aeff8d06bcc0c3f860e64e4b2770da0c832d2b5a7bfa9e192fd3086ee72f2
|
| 3 |
+
size 174611
|
models/subword_markov/so_markov_ctx1_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 1,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_contexts": 3275,
|
| 6 |
+
"total_transitions": 19130886
|
| 7 |
+
}
|
models/subword_markov/so_markov_ctx2_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a27a92ec5f3ffa23b7cf3c75a9b0cc7363e867c3a0330b100e63ea078929a5be
|
| 3 |
+
size 820935
|
models/subword_markov/so_markov_ctx2_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_contexts": 22823,
|
| 6 |
+
"total_transitions": 19120468
|
| 7 |
+
}
|
models/subword_markov/so_markov_ctx3_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa7b97abf68f57ef13b410a7d34695c83e0ca6354199a3db7056caa075cafdcf
|
| 3 |
+
size 2724482
|
models/subword_markov/so_markov_ctx3_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_contexts": 97500,
|
| 6 |
+
"total_transitions": 19110050
|
| 7 |
+
}
|
models/subword_markov/so_markov_ctx4_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da73cc989fbeeeb7d84546de86503781b5724832dab7b7bd48c0ed68e97995c7
|
| 3 |
+
size 7776697
|
models/subword_markov/so_markov_ctx4_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"context_size": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_contexts": 349170,
|
| 6 |
+
"total_transitions": 19099632
|
| 7 |
+
}
|
models/subword_ngram/so_2gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74d2405dbb3002ed1dc32cd8e789a763382ad6add59103f012a08e45bebbeef2
|
| 3 |
+
size 87102
|
models/subword_ngram/so_2gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 2,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_ngrams": 6710,
|
| 6 |
+
"total_ngrams": 19130886
|
| 7 |
+
}
|
models/subword_ngram/so_3gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cafdf27f01e2cf7d045992771396f3754dc27ea5e0599e7accbde4192408c3a1
|
| 3 |
+
size 552561
|
models/subword_ngram/so_3gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 3,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_ngrams": 42349,
|
| 6 |
+
"total_ngrams": 19120468
|
| 7 |
+
}
|
models/subword_ngram/so_4gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b569e2ca221ca8219d292a27491df985752d473b4498a995158a1d3df39ada63
|
| 3 |
+
size 2168878
|
models/subword_ngram/so_4gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 4,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_ngrams": 193486,
|
| 6 |
+
"total_ngrams": 19110050
|
| 7 |
+
}
|
models/subword_ngram/so_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1eb952f49aa5fbcd9196383ba7f64124df23e74cc0095ee3ad7fb2c5d98cddfb
|
| 3 |
+
size 5505452
|
models/subword_ngram/so_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "so",
|
| 5 |
+
"unique_ngrams": 478214,
|
| 6 |
+
"total_ngrams": 19099632
|
| 7 |
+
}
|
models/tokenizer/so_tokenizer_16k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83b98da9c08b1c5039f3a0a4d3ce7a1fca73428b4565b7d3dbf5e446ecf0c4bc
|
| 3 |
+
size 508953
|
models/tokenizer/so_tokenizer_16k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/so_tokenizer_32k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34e22acd9d770030f865d169c320d49f24c08290f252ad830e8935cc8e07a441
|
| 3 |
+
size 786287
|
models/tokenizer/so_tokenizer_32k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/so_tokenizer_64k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40cb2085164fff4afa0a7a06bf335771c3bf9f1f5960bdc99594fc1c3c29b5fb
|
| 3 |
+
size 1340326
|
models/tokenizer/so_tokenizer_64k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/so_tokenizer_8k.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fd45b1c6c32d8b355f4173c1ca4190668dca75edabf7e66d56be2695a425ab7e
|
| 3 |
+
size 372953
|
models/tokenizer/so_tokenizer_8k.vocab
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/so_vocabulary.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb70a3488651b7958363d65e1a7b65e56d6e30aff3db61306511d26cbf999b66
|
| 3 |
+
size 1545240
|
models/vocabulary/so_vocabulary_metadata.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "so",
|
| 3 |
+
"vocabulary_size": 88887,
|
| 4 |
+
"variant": "full",
|
| 5 |
+
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.06697337056205717,
|
| 7 |
+
"coverage": {
|
| 8 |
+
"top_100": 0.3564944301084534,
|
| 9 |
+
"top_1000": 0.5764355204360523,
|
| 10 |
+
"top_5000": 0.7498666000882661,
|
| 11 |
+
"top_10000": 0.8172606086428217
|
| 12 |
+
},
|
| 13 |
+
"hapax_count": 108544,
|
| 14 |
+
"hapax_ratio": 0.5497819491366605,
|
| 15 |
+
"total_documents": 10418
|
| 16 |
+
}
|
| 17 |
+
}
|
models/word_markov/so_markov_ctx1_word.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2626f9f45899c52128a1fb39ffc1333fd6bbcd15990217ea1c7be67270bfc98f
|
| 3 |
+
size 10976823
|