lv / README.md
omarkamali's picture
Upload all models and assets for lv (latest)
b02549f verified
metadata
language: lv
language_name: Latvian
language_family: baltic
tags:
  - wikilangs
  - nlp
  - tokenizer
  - embeddings
  - n-gram
  - markov
  - wikipedia
  - feature-extraction
  - sentence-similarity
  - tokenization
  - n-grams
  - markov-chain
  - text-mining
  - fasttext
  - babelvec
  - vocabulous
  - vocabulary
  - monolingual
  - family-baltic
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
  - omarkamali/wikipedia-monthly
dataset_info:
  name: wikipedia-monthly
  description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
  - name: best_compression_ratio
    type: compression
    value: 4.859
  - name: best_isotropy
    type: isotropy
    value: 0.8084
  - name: vocabulary_size
    type: vocab
    value: 0
generated: 2026-01-10T00:00:00.000Z

Latvian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Latvian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.645x 3.65 0.1438% 1,511,025
16k 4.088x 4.09 0.1613% 1,347,208
32k 4.505x 4.51 0.1778% 1,222,479
64k 4.859x 🏆 4.86 0.1917% 1,133,428

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Vārniņas ir ciems Smiltenes novada Launkalnes pagastā. Atrodas pagasta dienvidau...

Vocab Tokens Count
8k ▁vār n iņas ▁ir ▁ciems ▁smiltenes ▁novada ▁lau n kalnes ... (+17 more) 27
16k ▁vār n iņas ▁ir ▁ciems ▁smiltenes ▁novada ▁laun kalnes ▁pagastā ... (+16 more) 26
32k ▁vār n iņas ▁ir ▁ciems ▁smiltenes ▁novada ▁laun kalnes ▁pagastā ... (+16 more) 26
64k ▁vārn iņas ▁ir ▁ciems ▁smiltenes ▁novada ▁launkalnes ▁pagastā . ▁atrodas ... (+14 more) 24

Sample 2: Oknupe ir ciems Vīksnas pagastā, Balvu novadā. Atrodas 235 km attālumā no Rīgas....

Vocab Tokens Count
8k ▁ok nu pe ▁ir ▁ciems ▁v īks nas ▁pagastā , ... (+28 more) 38
16k ▁ok nu pe ▁ir ▁ciems ▁vīks nas ▁pagastā , ▁balvu ... (+26 more) 36
32k ▁ok nu pe ▁ir ▁ciems ▁vīksnas ▁pagastā , ▁balvu ▁novadā ... (+25 more) 35
64k ▁ok nu pe ▁ir ▁ciems ▁vīksnas ▁pagastā , ▁balvu ▁novadā ... (+25 more) 35

Sample 3: Luķes ir ciems Gulbenes novada Rankas pagastā. Atrodas pagasta ziemeļu daļā. Apd...

Vocab Tokens Count
8k ▁lu ķes ▁ir ▁ciems ▁gulbenes ▁novada ▁ran kas ▁pagastā . ... (+16 more) 26
16k ▁lu ķes ▁ir ▁ciems ▁gulbenes ▁novada ▁ran kas ▁pagastā . ... (+16 more) 26
32k ▁lu ķes ▁ir ▁ciems ▁gulbenes ▁novada ▁rankas ▁pagastā . ▁atrodas ... (+15 more) 25
64k ▁lu ķes ▁ir ▁ciems ▁gulbenes ▁novada ▁rankas ▁pagastā . ▁atrodas ... (+15 more) 25

Key Findings

  • Best Compression: 64k achieves 4.859x compression
  • Lowest UNK Rate: 8k with 0.1438% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 186,971 17.51 763,036 5.9% 15.6%
2-gram Subword 377 🏆 8.56 13,410 58.1% 98.3%
3-gram Word 376,228 18.52 1,082,562 4.6% 11.0%
3-gram Subword 3,642 11.83 114,502 20.1% 61.2%
4-gram Word 838,069 19.68 1,874,907 3.2% 7.7%
4-gram Subword 22,176 14.44 679,251 9.2% 30.8%
5-gram Word 716,017 19.45 1,422,304 3.0% 7.4%
5-gram Subword 92,488 16.50 2,257,677 5.0% 18.1%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 ārējās saites 77,523
2 atsauces ārējās 46,856
3 kā arī 36,975
4 līdz gadam 31,268
5 gadā dzimušie 26,462

3-grams (Word):

Rank N-gram Count
1 atsauces ārējās saites 46,815
2 no līdz gadam 19,254
3 ārējās saites gadā 14,728
4 saites gadā dzimušie 14,663
5 dzimušie gadā mirušie 9,849

4-grams (Word):

Rank N-gram Count
1 ārējās saites gadā dzimušie 14,640
2 gadā dzimušie gadā mirušie 8,825
3 atsauces ārējās saites gadā 7,950
4 gada vasaras olimpiskajās spēlēs 6,960
5 gada vasaras olimpisko spēļu 5,942

5-grams (Word):

Rank N-gram Count
1 atsauces ārējās saites gadā dzimušie 7,930
2 gada vasaras olimpisko spēļu dalībnieki 4,199
3 ārējās saites gadā dzimušie gadā 3,572
4 saites gadā dzimušie gadā mirušie 3,570
5 atsauces ārējās saites gada filmas 3,413

2-grams (Subword):

Rank N-gram Count
1 s _ 7,415,857
2 a _ 4,233,722
3 i e 3,834,903
4 a s 3,749,982
5 _ p 2,817,996

3-grams (Subword):

Rank N-gram Count
1 a s _ 2,663,220
2 i j a 1,092,354
3 _ g a 1,045,440
4 _ p a 969,042
5 e s _ 927,955

4-grams (Subword):

Rank N-gram Count
1 _ u n _ 832,357
2 _ g a d 790,192
3 j a s _ 651,311
4 i j a s 601,430
5 _ i r _ 445,858

5-grams (Subword):

Rank N-gram Count
1 i j a s _ 555,973
2 _ g a d a 327,759
3 _ g a d ā 311,319
4 g a d a _ 289,208
5 s _ u n _ 258,875

Key Findings

  • Best Perplexity: 2-gram (subword) with 377
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~18% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 1.0564 2.080 11.08 1,076,401 0.0%
1 Subword 0.9798 1.972 6.86 5,866 2.0%
2 Word 0.3096 1.239 1.86 11,904,580 69.0%
2 Subword 0.8333 1.782 5.70 40,212 16.7%
3 Word 0.1014 1.073 1.19 22,093,035 89.9%
3 Subword 0.8282 1.775 4.78 229,319 17.2%
4 Word 0.0411 🏆 1.029 1.07 26,247,285 95.9%
4 Subword 0.7392 1.669 3.61 1,095,639 26.1%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. un atsauces ārējās saites gadā par bruņutanku divīziju tā barojas ar un ietērps bija andris bērziņš
  2. ir piešķirta labākajam debitantam šo gleznu to šķietamo retumu novērojumi bija reperis 9 kārta sešpa...
  3. no divām spāņu izcelsmes azerbaidžānas robežas dažkārt piedēvēto dzīvo krievijā kalugas 14 gadsimtā ...

Context Size 2:

  1. ārējās saites photographs of yamashita last words nr 99 miley cyrus dziesmu saraksts visu dziesmu mū...
  2. atsauces ārējās saites kārļa blūma mājas gusevā kaļiņingradas apgabals krievijā bērnību aizvadījis l...
  3. kā arī 24 šaha olimpiāde 2 galdiņš anna zatonskiha 3 galdiņš hiroko maeda japāna 6 no kopējās

Context Size 3:

  1. atsauces ārējās saites salas okeāna salas okeāna salas okeāna salas sala un makdonalda salas daba vi...
  2. no līdz gadam četras reizes pēc kārtas spēja kāpt uz goda pjedestāla pk posmā izcīnīja pokļukā ieņem...
  3. ārējās saites gadā dzimušie futbolisti izlases futbolisti barcelona spēlētāji braga spēlētāji gada f...

Context Size 4:

  1. ārējās saites gadā dzimušie dzimušie dziedātāji dziedātāji dzejnieki komponisti aktieri kas nosodīja...
  2. gadā dzimušie gadā mirušie valodā rakstošie dzimušie filozofi
  3. atsauces ārējās saites gadā dzimušie gadā mirušie šahisti dzimušie rakstnieki

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _ga_—_v_tā_viero
  2. ai_šas_pējeilstr
  3. iskairbonsilieģe

Context Size 2:

  1. s_ku_seviņa_(par_
  2. a_dreglerfespiesm
  3. iempielleines_atk

Context Size 3:

  1. as_(bhk),_for_de_r
  2. ija_resstan"_tika/
  3. _gada_slēdzirnaziņ

Context Size 4:

  1. _un_šķērso_valdīts_
  2. _gadā._iedalīt_pašr
  3. jas_kultāti_pat_hom

Key Findings

  • Best Predictability: Context-4 (word) with 95.9% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (1,095,639 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 525,941
Total Tokens 31,646,239
Mean Frequency 60.17
Median Frequency 4
Frequency Std Dev 1858.77

Most Common Words

Rank Word Frequency
1 un 837,232
2 ir 448,994
3 no 329,310
4 ar 312,526
5 gadā 311,069
6 gada 295,620
7 par 232,587
8 bija 182,230
9 arī 168,500
10 1 160,323

Least Common Words (from vocabulary)

Rank Word Frequency
1 gesnēriju 2
2 oerst 2
3 feuillet 2
4 aizšauta 2
5 حمّص 2
6 saspaidot 2
7 levantiešu 2
8 bowsera 2
9 гайлите 2
10 kuckersiana 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9424
R² (Goodness of Fit) 0.995100
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 24.5%
Top 1,000 46.0%
Top 5,000 65.1%
Top 10,000 73.1%

Key Findings

  • Zipf Compliance: R²=0.9951 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 24.5% of corpus
  • Long Tail: 515,941 words needed for remaining 26.9% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8084 🏆 0.3574 N/A N/A
mono_64d 64 0.7789 0.2822 N/A N/A
mono_128d 128 0.7122 0.2116 N/A N/A
aligned_32d 32 0.8084 0.3676 0.1900 0.5080
aligned_64d 64 0.7789 0.2789 0.2640 0.6700
aligned_128d 128 0.7122 0.2124 0.3740 0.7500

Key Findings

  • Best Isotropy: mono_32d with 0.8084 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2850. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 37.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.593 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-s skatījumus, selēku, saucietis
-a antwone, antociānus, atkritēju
-k kemalisms, kuģu, korporatīvajām
-ma makrofaunā, materiālzinātnes, maksillas
-p peculiarities, pilsoņtiesību, pūpēžu
-b beijing, blīvējumiem, bbva
-m metālopera, makrofaunā, městec
-d daiļkrāsotāja, džungļus, definēja

Productive Suffixes

Suffix Examples
-s cuspidatus, skatījumus, informatics
-a daiļkrāsotāja, leontīna, definēja
-as lielsusējas, lentas, elektrizācijas
-u ofenbergu, imulu, pilsoņtiesību
-i šakarniai, zonai, oviši
-m stūrētājam, korporatīvajām, reliktām
-e antwone, zvirgzdupe, edamame
-em blīvējumiem, frančiem, briesmoņiem

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
pēlē 2.56x 98 contexts spēlē, spēlēj, spēlēt
spēl 2.22x 107 contexts spēlē, spēlu, spēle
akst 1.65x 272 contexts bakst, aksts, aksta
veid 1.57x 278 contexts veidu, veida, veidi
tisk 1.45x 327 contexts ētiskā, ētiska, ētiski
dzīv 1.65x 122 contexts dzīve, dzīva, dzīvi
tsau 2.39x 25 contexts atsauc, atsauce, atsauks
iskā 1.55x 134 contexts diskā, riskā, ētiskā
alst 1.49x 144 contexts valst, salst, aalst
eido 1.58x 108 contexts eidos, feido, veido
ācij 1.53x 117 contexts ācija, nācija, mācija
ības 1.83x 49 contexts lības, rības, čības

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-s -s 248 words skurass, schildts
-p -s 235 words pogačarsričards, praxis
-a -s 210 words aments, abdelazīzs
-k -s 172 words krūzes, kodzas
-b -s 139 words bekingemšīras, beringovskas
-s -a 112 words skolvadība, sēretika
-d -s 111 words dedalus, dauders
-p -a 100 words pārraidija, patnema
-k -a 94 words koldhārbora, kairiša
-m -s 92 words mazjaudīgus, micromys

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
aprīlīdžeks aprīlīdž-e-ks 7.5 e
trusēniem trusēn-i-em 7.5 i
skābputras skābput-ra-s 7.5 ra
pilsoniski pilsoni-s-ki 7.5 s
asinssālim asinssāl-i-m 7.5 i
gūstekņiem gūstekņ-i-em 7.5 i
uzņēmīgiem uzņēmīg-i-em 7.5 i
pieraduma pieradu-m-a 7.5 m
prikumsku prikum-s-ku 7.5 s
kērklīsas kērklī-s-as 7.5 s
acantosis acanto-s-is 7.5 s
miecēšana miecēš-a-na 7.5 a
kapranoss kaprano-s-s 7.5 s
veinštrāses veinštrā-s-es 7.5 s
ūdenssuņiem ūdenssuņ-i-em 7.5 i

6.6 Linguistic Interpretation

Automated Insight: The language Latvian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.86x)
N-gram 2-gram Lowest perplexity (377)
Markov Context-4 Highest predictability (95.9%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-10 15:10:38