ka / README.md
omarkamali's picture
Upload all models and assets for ka (latest)
b2b54d6 verified
metadata
language: ka
language_name: Georgian
language_family: kartvelian
tags:
  - wikilangs
  - nlp
  - tokenizer
  - embeddings
  - n-gram
  - markov
  - wikipedia
  - feature-extraction
  - sentence-similarity
  - tokenization
  - n-grams
  - markov-chain
  - text-mining
  - fasttext
  - babelvec
  - vocabulous
  - vocabulary
  - monolingual
  - family-kartvelian
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
  - omarkamali/wikipedia-monthly
dataset_info:
  name: wikipedia-monthly
  description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
  - name: best_compression_ratio
    type: compression
    value: 5.034
  - name: best_isotropy
    type: isotropy
    value: 0.7869
  - name: vocabulary_size
    type: vocab
    value: 0
generated: 2026-01-10T00:00:00.000Z

Georgian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Georgian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

๐Ÿ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.607x 3.61 0.0743% 1,129,507
16k 4.126x 4.13 0.0850% 987,428
32k 4.611x 4.61 0.0950% 883,432
64k 5.034x ๐Ÿ† 5.04 0.1037% 809,192

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: แƒ‘แƒ () โ€” แƒ›แƒ”แƒแƒ แƒ” แƒแƒกแƒ แƒแƒ แƒแƒ‘แƒฃแƒš แƒ“แƒแƒ›แƒฌแƒ”แƒ แƒšแƒแƒ‘แƒแƒจแƒ˜. แƒ‘แƒ แƒแƒ แƒ˜แƒก แƒแƒ แƒแƒ‘แƒฃแƒšแƒ˜ แƒ•แƒแƒ แƒ˜แƒแƒœแƒขแƒ˜ แƒ”แƒ‘แƒ แƒแƒฃแƒšแƒ˜ แƒ‘แƒ”แƒ—แƒ˜แƒกแƒ. ...

Vocab Tokens Count
8k โ–แƒ‘แƒ โ–() โ–โ€” โ–แƒ›แƒ”แƒแƒ แƒ” โ–แƒแƒกแƒ โ–แƒแƒ แƒแƒ‘ แƒฃแƒš โ–แƒ“แƒแƒ›แƒฌแƒ”แƒ  แƒšแƒแƒ‘แƒแƒจแƒ˜ . ... (+19 more) 29
16k โ–แƒ‘แƒ โ–() โ–โ€” โ–แƒ›แƒ”แƒแƒ แƒ” โ–แƒแƒกแƒ โ–แƒแƒ แƒแƒ‘แƒฃแƒš โ–แƒ“แƒแƒ›แƒฌแƒ”แƒ  แƒšแƒแƒ‘แƒแƒจแƒ˜ . โ–แƒ‘แƒ ... (+16 more) 26
32k โ–แƒ‘แƒ โ–() โ–โ€” โ–แƒ›แƒ”แƒแƒ แƒ” โ–แƒแƒกแƒ โ–แƒแƒ แƒแƒ‘แƒฃแƒš โ–แƒ“แƒแƒ›แƒฌแƒ”แƒ  แƒšแƒแƒ‘แƒแƒจแƒ˜ . โ–แƒ‘แƒ ... (+13 more) 23
64k โ–แƒ‘แƒ โ–() โ–โ€” โ–แƒ›แƒ”แƒแƒ แƒ” โ–แƒแƒกแƒ โ–แƒแƒ แƒแƒ‘แƒฃแƒš โ–แƒ“แƒแƒ›แƒฌแƒ”แƒ แƒšแƒแƒ‘แƒแƒจแƒ˜ . โ–แƒ‘แƒ โ–แƒแƒ แƒ˜แƒก ... (+12 more) 22

Sample 2: แƒฎแƒแƒ—แƒ˜แƒœแƒ‘แƒฃแƒšแƒแƒงแƒ˜ () โ€” แƒกแƒแƒคแƒ”แƒšแƒ˜ แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜, แƒคแƒฃแƒ–แƒฃแƒšแƒ˜แƒก แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜. แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒ แƒแƒ˜แƒ...

Vocab Tokens Count
8k โ–แƒฎ แƒแƒ—แƒ˜แƒœ แƒ‘ แƒฃแƒšแƒ แƒง แƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ ... (+10 more) 20
16k โ–แƒฎ แƒแƒ—แƒ˜แƒœ แƒ‘ แƒฃแƒšแƒ แƒงแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , ... (+9 more) 19
32k โ–แƒฎ แƒแƒ—แƒ˜แƒœ แƒ‘แƒฃแƒšแƒ แƒงแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , โ–แƒคแƒฃแƒ–แƒฃแƒšแƒ˜แƒก ... (+6 more) 16
64k โ–แƒฎ แƒแƒ—แƒ˜แƒœ แƒ‘แƒฃแƒšแƒแƒงแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , โ–แƒคแƒฃแƒ–แƒฃแƒšแƒ˜แƒก โ–แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜ ... (+5 more) 15

Sample 3: แƒ›แƒ”แƒ แƒ“แƒ˜แƒœแƒšแƒ˜ () โ€” แƒกแƒแƒคแƒ”แƒšแƒ˜ แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜, แƒคแƒฃแƒ–แƒฃแƒšแƒ˜แƒก แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜. แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒ แƒแƒ˜แƒแƒœแƒ˜แƒก...

Vocab Tokens Count
8k โ–แƒ›แƒ”แƒ  แƒ“แƒ˜แƒœ แƒšแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , โ–แƒค แƒฃแƒ– ... (+7 more) 17
16k โ–แƒ›แƒ”แƒ  แƒ“แƒ˜แƒœ แƒšแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , โ–แƒค แƒฃแƒ– ... (+7 more) 17
32k โ–แƒ›แƒ”แƒ  แƒ“แƒ˜แƒœ แƒšแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , โ–แƒคแƒฃแƒ–แƒฃแƒšแƒ˜แƒก โ–แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜ ... (+5 more) 15
64k โ–แƒ›แƒ”แƒ  แƒ“แƒ˜แƒœ แƒšแƒ˜ โ–() โ–โ€” โ–แƒกแƒแƒคแƒ”แƒšแƒ˜ โ–แƒแƒ–แƒ”แƒ แƒ‘แƒแƒ˜แƒฏแƒแƒœแƒจแƒ˜ , โ–แƒคแƒฃแƒ–แƒฃแƒšแƒ˜แƒก โ–แƒ แƒแƒ˜แƒแƒœแƒจแƒ˜ ... (+5 more) 15

Key Findings

  • Best Compression: 64k achieves 5.034x compression
  • Lowest UNK Rate: 8k with 0.0743% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 211,247 17.69 839,931 5.0% 14.8%
2-gram Subword 423 ๐Ÿ† 8.73 18,881 58.4% 96.6%
3-gram Word 297,944 18.18 972,504 4.8% 13.7%
3-gram Subword 3,918 11.94 159,884 21.8% 60.3%
4-gram Word 509,839 18.96 1,548,052 4.2% 12.7%
4-gram Subword 22,811 14.48 936,455 10.0% 32.5%
5-gram Word 359,649 18.46 1,104,097 4.9% 14.4%
5-gram Subword 88,814 16.44 2,995,844 5.2% 19.7%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ 100,310
2 แƒ˜แƒฎแƒ˜แƒšแƒ”แƒ— แƒแƒ’แƒ แƒ”แƒ—แƒ•แƒ” 38,767
3 แƒ”แƒ แƒ— แƒ”แƒ แƒ—แƒ˜ 38,192
4 แƒ“แƒ แƒกแƒฎแƒ•แƒ 20,983
5 of the 20,829

3-grams (Word):

Rank N-gram Count
1 แƒฌแƒšแƒ˜แƒก แƒ›แƒแƒœแƒแƒชแƒ”แƒ›แƒ”แƒ‘แƒ˜แƒ— แƒ›แƒแƒกแƒแƒฎแƒšแƒ”แƒแƒ‘แƒ 9,844
2 แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ 8,451
3 แƒ›แƒ˜แƒฃแƒฎแƒ”แƒ“แƒแƒ•แƒแƒ“ แƒ˜แƒ›แƒ˜แƒกแƒ แƒ แƒแƒ› 8,239
4 แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ 7,888
5 แƒ›แƒ“แƒ”แƒ‘แƒแƒ แƒ”แƒแƒ‘แƒก แƒ–แƒฆแƒ•แƒ˜แƒก แƒ“แƒแƒœแƒ˜แƒ“แƒแƒœ 7,694

4-grams (Word):

Rank N-gram Count
1 แƒ™แƒแƒชแƒ˜ แƒฌ แƒ˜แƒฎแƒ˜แƒšแƒ”แƒ— แƒแƒ’แƒ แƒ”แƒ—แƒ•แƒ” 6,676
2 แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ˜แƒก แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ 5,942
3 แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ”แƒ‘แƒ˜ 5,878
4 แƒ™แƒ› แƒ˜แƒ แƒ˜แƒฎแƒ˜แƒšแƒ”แƒ— แƒแƒ’แƒ แƒ”แƒ—แƒ•แƒ” 5,763
5 แƒญแƒ˜แƒแƒœแƒญแƒ•แƒ”แƒšแƒแƒกแƒ”แƒ‘แƒ แƒ—แƒ แƒ”แƒ แƒ— แƒ”แƒ แƒ—แƒ˜ แƒœแƒแƒ˜แƒ แƒกแƒแƒฎแƒ”แƒแƒ‘แƒ 5,614

5-grams (Word):

Rank N-gram Count
1 แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ˜แƒก แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ”แƒ‘แƒ˜ 5,860
2 แƒ™แƒšแƒแƒกแƒ˜แƒก แƒญแƒ˜แƒแƒœแƒญแƒ•แƒ”แƒšแƒแƒกแƒ”แƒ‘แƒ แƒ—แƒ แƒ”แƒ แƒ— แƒ”แƒ แƒ—แƒ˜ แƒœแƒแƒ˜แƒ แƒกแƒแƒฎแƒ”แƒแƒ‘แƒ 5,614
3 แƒ›แƒฌแƒ”แƒ แƒ—แƒ แƒ™แƒšแƒแƒกแƒ˜แƒก แƒญแƒ˜แƒแƒœแƒญแƒ•แƒ”แƒšแƒแƒกแƒ”แƒ‘แƒ แƒ—แƒ แƒ”แƒ แƒ— แƒ”แƒ แƒ—แƒ˜ 5,614
4 แƒคแƒ”แƒฎแƒกแƒแƒฎแƒกแƒ แƒ˜แƒแƒœแƒ—แƒ แƒขแƒ˜แƒžแƒ˜แƒก แƒ›แƒฌแƒ”แƒ แƒ—แƒ แƒ™แƒšแƒแƒกแƒ˜แƒก แƒญแƒ˜แƒแƒœแƒญแƒ•แƒ”แƒšแƒแƒกแƒ”แƒ‘แƒ แƒ—แƒ 5,614
5 แƒขแƒ˜แƒžแƒ˜แƒก แƒ›แƒฌแƒ”แƒ แƒ—แƒ แƒ™แƒšแƒแƒกแƒ˜แƒก แƒญแƒ˜แƒแƒœแƒญแƒ•แƒ”แƒšแƒแƒกแƒ”แƒ‘แƒ แƒ—แƒ แƒ”แƒ แƒ— 5,614

2-grams (Subword):

Rank N-gram Count
1 แƒก _ 7,040,665
2 แƒ˜ แƒก 7,006,427
3 แƒ˜ _ 6,580,536
4 แƒ _ 4,984,758
5 แƒ” แƒ‘ 4,979,269

3-grams (Subword):

Rank N-gram Count
1 แƒ˜ แƒก _ 5,017,584
2 แƒ” แƒ‘ แƒ˜ 2,375,826
3 _ แƒ“ แƒ 2,051,321
4 _ แƒก แƒ 1,739,078
5 แƒ“ แƒ _ 1,650,928

4-grams (Subword):

Rank N-gram Count
1 _ แƒ“ แƒ _ 1,089,218
2 แƒ‘ แƒ˜ แƒก _ 984,947
3 แƒ” แƒ‘ แƒ˜ แƒก 883,610
4 แƒ” แƒ‘ แƒ˜ _ 738,436
5 แƒ˜ แƒก _ แƒ› 733,039

5-grams (Subword):

Rank N-gram Count
1 แƒ” แƒ‘ แƒ˜ แƒก _ 734,333
2 แƒ _ แƒ“ แƒ _ 430,206
3 , _ แƒ  แƒ แƒ› 406,399
4 แƒ˜ แƒก _ แƒก แƒ 350,334
5 แƒ” แƒ‘ แƒฃ แƒš แƒ˜ 307,583

Key Findings

  • Best Perplexity: 2-gram (subword) with 423
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~20% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.9133 1.883 9.96 1,644,802 8.7%
1 Subword 1.0685 2.097 7.59 8,326 0.0%
2 Word 0.2778 1.212 1.75 16,356,120 72.2%
2 Subword 0.7948 1.735 5.53 63,087 20.5%
3 Word 0.0801 1.057 1.15 28,502,543 92.0%
3 Subword 0.7992 1.740 4.61 348,410 20.1%
4 Word 0.0282 ๐Ÿ† 1.020 1.04 32,622,645 97.2%
4 Subword 0.7081 1.634 3.48 1,604,353 29.2%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. แƒ“แƒ แƒคแƒ”แƒกแƒขแƒ˜แƒ•แƒแƒšแƒ˜แƒก roadburn festival at war chapter 8 6 7 489 แƒฎแƒ”แƒšแƒแƒ•แƒœแƒ”แƒ‘แƒแƒจแƒ˜ แƒ’แƒแƒฌแƒแƒคแƒฃแƒšแƒ˜ แƒ“แƒ แƒ“แƒแƒกแƒแƒ•แƒšแƒฃแƒ แƒ˜ แƒ›แƒแƒ แƒ˜แƒฃแƒšแƒ˜
  2. แƒฌแƒšแƒ˜แƒก แƒแƒžแƒ แƒ˜แƒšแƒจแƒ˜ แƒŸแƒฃแƒ แƒœแƒแƒš modern philology v แƒกแƒแƒฃแƒ™แƒฃแƒœแƒ”แƒ”แƒ‘แƒ˜แƒ— แƒซแƒ”แƒ’แƒšแƒ˜ แƒ•แƒแƒขแƒ”แƒ แƒขแƒแƒœ แƒ’แƒšแƒแƒกแƒ˜แƒ”แƒ แƒ˜แƒก แƒ›แƒจแƒ•แƒ˜แƒ“แƒแƒ‘แƒ˜แƒก แƒ’แƒแƒœแƒ›แƒขแƒ™แƒ˜แƒชแƒ”แƒ‘แƒแƒจแƒ˜ ...
  3. แƒฌแƒ”แƒšแƒก แƒขแƒแƒซแƒ แƒ˜แƒก แƒ™แƒ แƒแƒ›แƒ˜แƒขแƒ˜ แƒชแƒ”แƒ›แƒ”แƒœแƒขแƒฅแƒ•แƒ˜แƒจแƒ˜แƒก แƒฎแƒกแƒœแƒแƒ แƒ˜แƒก แƒกแƒ˜แƒ›แƒ™แƒ•แƒ แƒ˜แƒ•แƒ” 0 1 แƒœแƒแƒ”แƒ›แƒ‘แƒ”แƒ แƒ˜ แƒ“แƒ”แƒ™แƒ”แƒ›แƒ‘แƒ”แƒ แƒ˜ แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒจแƒ˜ แƒญแƒแƒšแƒ˜แƒก แƒ›แƒฃแƒฎแƒ˜...

Context Size 2:

  1. แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ”แƒ‘แƒ˜ แƒฅแƒแƒšแƒแƒฅแƒ”แƒ‘แƒ˜ แƒ“แƒ แƒฌแƒ”แƒšแƒก แƒ˜แƒก แƒ›แƒ˜แƒ˜แƒฌแƒ•แƒ˜แƒ”แƒก แƒžแƒ”แƒขแƒ”แƒ แƒ‘แƒฃแƒ แƒ’...
  2. แƒ˜แƒฎแƒ˜แƒšแƒ”แƒ— แƒแƒ’แƒ แƒ”แƒ—แƒ•แƒ” แƒ›แƒ˜แƒœแƒแƒก แƒŸแƒ”แƒ แƒแƒ˜แƒกแƒ˜ แƒ‘แƒ แƒแƒ–แƒ˜แƒšแƒ˜แƒ˜แƒก แƒจแƒขแƒแƒขแƒ”แƒ‘แƒ˜ แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒฐแƒแƒ แƒžแƒ”แƒ แƒ˜ แƒ›แƒฃแƒกแƒ˜แƒ™แƒแƒก...
  3. แƒ”แƒ แƒ— แƒ”แƒ แƒ—แƒ˜ แƒ˜แƒœแƒ˜แƒชแƒ˜แƒแƒขแƒแƒ แƒ˜ แƒกแƒฃแƒšแƒ˜ แƒ“แƒ แƒแƒ› แƒ“แƒ แƒแƒ˜แƒ“แƒแƒœ แƒชแƒ˜แƒฎแƒ”แƒกแƒ˜แƒ›แƒแƒ’แƒ แƒ”แƒ› แƒจแƒ”แƒฌแƒงแƒ•แƒ˜แƒขแƒ แƒ›แƒฎแƒแƒšแƒแƒ“ แƒ›แƒแƒจแƒ˜แƒœ แƒ”แƒฅแƒ•แƒ”แƒ›แƒ“แƒ”แƒ‘แƒแƒ แƒ”แƒ‘แƒ แƒ—แƒฃ แƒแƒฏแƒแƒฎแƒก แƒกแƒแƒ™...

Context Size 3:

  1. แƒฌแƒšแƒ˜แƒก แƒ›แƒแƒœแƒแƒชแƒ”แƒ›แƒ”แƒ‘แƒ˜แƒ— แƒ›แƒแƒกแƒแƒฎแƒšแƒ”แƒแƒ‘แƒ 84 469 แƒแƒ“แƒแƒ›แƒ˜แƒแƒœแƒก แƒจแƒ”แƒแƒ“แƒ’แƒ”แƒœแƒ“แƒ แƒคแƒแƒ แƒ—แƒแƒ‘แƒ˜ 358 แƒ™แƒ› แƒ›แƒแƒกแƒแƒฎแƒšแƒ”แƒแƒ‘แƒ 61 418 แƒแƒ“แƒแƒ›แƒ˜แƒแƒœแƒ˜ แƒฌแƒšแƒ˜แƒก...
  2. แƒ›แƒ˜แƒฃแƒฎแƒ”แƒ“แƒแƒ•แƒแƒ“ แƒ˜แƒ›แƒ˜แƒกแƒ แƒ แƒแƒ› แƒ›แƒžแƒ แƒ›แƒ”แƒ“แƒ˜แƒ™แƒแƒ›แƒ”แƒœแƒขแƒฃแƒ แƒแƒ“ แƒ•แƒ”แƒ  แƒ˜แƒ™แƒฃแƒ แƒœแƒ”แƒ‘แƒ แƒ›แƒ”แƒ“แƒ˜แƒ™แƒแƒ›แƒ”แƒœแƒขแƒ”แƒ‘แƒ˜ แƒจแƒ”แƒ˜แƒซแƒšแƒ”แƒ‘แƒ แƒ’แƒแƒ›แƒแƒ•แƒ˜แƒงแƒ”แƒœแƒแƒ— แƒกแƒ˜แƒ›แƒžแƒขแƒแƒ›แƒ”แƒ‘แƒ˜แƒก ...
  3. แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ แƒ›แƒแƒ›แƒฆแƒ”แƒ แƒšแƒ”แƒ‘แƒ˜ 25 แƒแƒ’แƒ•แƒ˜แƒกแƒขแƒ records แƒ˜แƒก แƒจแƒ”แƒ›แƒกแƒ แƒฃแƒšแƒ”แƒ‘แƒšแƒ”แƒ‘แƒ˜ records แƒ˜แƒก แƒจแƒ”แƒ›แƒกแƒ แƒฃแƒšแƒ”แƒ‘แƒšแƒ”แƒ‘แƒ˜ ...

Context Size 4:

  1. แƒ™แƒแƒชแƒ˜ แƒฌ แƒ˜แƒฎแƒ˜แƒšแƒ”แƒ— แƒแƒ’แƒ แƒ”แƒ—แƒ•แƒ” แƒกแƒ”แƒ•แƒ˜แƒšแƒ˜แƒ˜แƒก แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ”แƒ‘แƒ˜ แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒแƒšแƒแƒœแƒ˜แƒกแƒ˜แƒก แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ˜แƒก แƒแƒคแƒ˜แƒชแƒ˜แƒ...
  2. แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ˜แƒก แƒแƒคแƒ˜แƒชแƒ˜แƒแƒšแƒฃแƒ แƒ˜ แƒกแƒแƒ˜แƒขแƒ˜ แƒกแƒฅแƒแƒšแƒ˜แƒ แƒ›แƒฃแƒœแƒ˜แƒชแƒ˜แƒžแƒแƒšแƒ˜แƒขแƒ”แƒขแƒ”แƒ‘แƒ˜ แƒฅแƒแƒšแƒแƒฅแƒ”แƒ‘แƒ˜ แƒ’แƒ•แƒ”แƒ แƒ“แƒ”แƒ‘แƒ˜ แƒ’แƒ•แƒแƒ แƒ˜แƒก แƒจแƒ”แƒ›แƒชแƒ•แƒ”แƒšแƒ˜ แƒกแƒ˜แƒ”แƒ‘แƒ˜แƒ— แƒ’แƒ•...
  3. แƒ™แƒ› แƒ˜แƒ แƒ˜แƒฎแƒ˜แƒšแƒ”แƒ— แƒแƒ’แƒ แƒ”แƒ—แƒ•แƒ” แƒ™แƒแƒšแƒฃแƒ›แƒ‘แƒ˜แƒ˜แƒก แƒฅแƒแƒšแƒแƒฅแƒ”แƒ‘แƒ˜แƒก แƒกแƒ˜แƒ แƒ แƒ”แƒกแƒฃแƒ แƒกแƒ”แƒ‘แƒ˜ แƒ˜แƒœแƒขแƒ”แƒ แƒœแƒ”แƒขแƒจแƒ˜ แƒฅแƒแƒšแƒแƒฅแƒ˜แƒก แƒ›แƒ—แƒแƒ•แƒ แƒแƒ‘แƒ˜แƒก แƒกแƒแƒ˜แƒขแƒ˜ แƒฅแƒแƒšแƒแƒฅแƒ˜แƒก แƒกแƒ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _แƒ›แƒ”แƒ”แƒœแƒ;_แƒฌแƒšแƒแƒ’แƒแƒก_แƒ™
  2. แƒ_แƒ›แƒแƒก_แƒ›แƒ“แƒ˜แƒกแƒแƒฆแƒแƒ‘แƒฃแƒš
  3. แƒ˜แƒกแƒ_แƒช_แƒ‘แƒแƒฐแƒแƒก_แƒกแƒขแƒฉแƒ˜

Context Size 2:

  1. แƒก_แƒœแƒ˜แƒ”แƒ แƒแƒšแƒ˜แƒ”แƒ แƒ’แƒ˜แƒ”แƒ แƒ˜แƒก
  2. แƒ˜แƒก_แƒแƒฅแƒ›แƒœแƒ˜แƒœแƒ˜แƒก_แƒ›แƒ™แƒ•แƒ”_
  3. แƒ˜_แƒ”แƒ แƒ—แƒ”แƒ›แƒ”แƒšแƒ˜,_nalos

Context Size 3:

  1. แƒ˜แƒก_แƒฏแƒ•แƒ แƒ˜แƒ_แƒ“แƒแƒจแƒ˜,_แƒ แƒแƒ›
  2. แƒ”แƒ‘แƒ˜แƒก_แƒฌแƒแƒ แƒ›แƒแƒ“แƒ˜แƒก_แƒ™แƒ แƒ”แƒ‘
  3. _แƒ“แƒแƒ˜แƒฅแƒชแƒ._แƒ™แƒ˜แƒ“แƒ”แƒ แƒ˜แƒšแƒ—แƒ

Context Size 4:

  1. _แƒ“แƒ_แƒแƒ›_แƒžแƒ แƒแƒ•แƒ˜._แƒ—แƒแƒ›แƒแƒจ
  2. แƒ‘แƒ˜แƒก_แƒกแƒแƒญแƒ˜แƒ แƒ._แƒฌแƒ”แƒšแƒก._แƒฎ
  3. แƒ”แƒ‘แƒ˜แƒกแƒแƒ›แƒ”_แƒกแƒ˜แƒ แƒ˜แƒ˜แƒก_แƒฌแƒงแƒแƒš

Key Findings

  • Best Predictability: Context-4 (word) with 97.2% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (1,604,353 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 715,127
Total Tokens 37,347,310
Mean Frequency 52.22
Median Frequency 4
Frequency Std Dev 1624.79

Most Common Words

Rank Word Frequency
1 แƒ“แƒ 1,097,500
2 แƒฌแƒšแƒ˜แƒก 288,743
3 แƒฌแƒ”แƒšแƒก 254,559
4 แƒ˜แƒงแƒ 188,838
5 แƒ˜แƒก 162,453
6 แƒ แƒแƒ›แƒ”แƒšแƒ˜แƒช 141,611
7 the 128,418
8 แƒ แƒแƒ› 124,976
9 1 122,280
10 แƒ›แƒ˜แƒกแƒ˜ 118,080

Least Common Words (from vocabulary)

Rank Word Frequency
1 pbsuccess 2
2 แƒ›แƒแƒœแƒ’แƒฃแƒกแƒ˜ 2
3 แƒ‘แƒแƒ แƒœแƒฐแƒแƒ›แƒ˜ 2
4 แƒ แƒแƒฉแƒแƒ™แƒ˜แƒก 2
5 peig 2
6 แƒšแƒ”แƒ›แƒกแƒ˜แƒก 2
7 smap 2
8 แƒ™แƒแƒ›แƒ˜แƒขแƒ˜แƒก 2
9 แƒ•แƒ˜แƒšแƒแƒ™แƒแƒ›แƒžแƒแƒก 2
10 แƒ“แƒ”แƒ•แƒแƒ แƒ”แƒก 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9374
Rยฒ (Goodness of Fit) 0.993145
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 19.3%
Top 1,000 42.2%
Top 5,000 62.0%
Top 10,000 70.3%

Key Findings

  • Zipf Compliance: Rยฒ=0.9931 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 19.3% of corpus
  • Long Tail: 705,127 words needed for remaining 29.7% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.7869 0.3479 N/A N/A
mono_64d 64 0.7389 0.2989 N/A N/A
mono_128d 128 0.6243 0.2604 N/A N/A
aligned_32d 32 0.7869 ๐Ÿ† 0.3607 0.1100 0.4300
aligned_64d 64 0.7389 0.3031 0.2300 0.6300
aligned_128d 128 0.6243 0.2636 0.2980 0.7120

Key Findings

  • Best Isotropy: aligned_32d with 0.7869 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3057. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 29.8% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.271 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-แƒกแƒ แƒกแƒแƒขแƒแƒ›แƒ—แƒแƒจแƒแƒ แƒ˜แƒกแƒ, แƒกแƒแƒ’แƒแƒœแƒซแƒฃแƒ แƒ˜แƒกแƒ, แƒกแƒแƒ›แƒแƒ แƒ—แƒšแƒ˜แƒแƒœแƒ˜
-แƒ แƒแƒ•แƒขแƒแƒ›แƒแƒขแƒ˜แƒ–แƒ˜แƒ แƒ”แƒ‘แƒฃแƒš, แƒแƒ’แƒ แƒแƒขแƒ”แƒฅแƒœแƒ˜แƒ™แƒ˜แƒก, แƒแƒชแƒแƒฃแƒ แƒแƒก
-แƒ’แƒ แƒ’แƒแƒ›แƒแƒ•แƒšแƒ˜แƒœแƒ”แƒ‘แƒ”แƒ‘แƒแƒ›แƒ“แƒ”, แƒ’แƒแƒ›แƒแƒชแƒแƒšแƒ™แƒ”แƒ•แƒ”แƒ‘แƒ”แƒšแƒ˜, แƒ’แƒแƒ—แƒฎแƒ แƒ”แƒ‘แƒ˜แƒกแƒ—แƒ•แƒ˜แƒก
-แƒ“แƒ แƒ“แƒแƒ’แƒ•แƒแƒœแƒ”แƒ‘แƒ”แƒ—, แƒ“แƒแƒ™แƒ แƒซแƒแƒšแƒฃแƒš, แƒ“แƒแƒžแƒงแƒ แƒแƒ‘แƒšแƒ˜
-แƒ› แƒ›แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒแƒ‘แƒแƒ–แƒ”, แƒ›แƒแƒ•แƒ แƒ˜แƒ™แƒ˜แƒแƒกแƒก, แƒ›แƒแƒœแƒ˜แƒจแƒœแƒ”แƒ‘แƒ”แƒš
-แƒ›แƒ แƒ›แƒแƒ•แƒ แƒ˜แƒ™แƒ˜แƒแƒกแƒก, แƒ›แƒแƒœแƒ˜แƒจแƒœแƒ”แƒ‘แƒ”แƒš, แƒ›แƒแƒ แƒฏแƒแƒœแƒ˜แƒจแƒ•แƒ˜แƒšแƒ˜
-แƒ›แƒ แƒ›แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒแƒ‘แƒแƒ–แƒ”, แƒ›แƒแƒ›แƒฅแƒœแƒ”แƒ•แƒ˜, แƒ›แƒแƒ›แƒšแƒแƒชแƒ•แƒ”แƒšแƒ—แƒแƒ’แƒแƒœ
-แƒก แƒกแƒแƒขแƒแƒ›แƒ—แƒแƒจแƒแƒ แƒ˜แƒกแƒ, แƒกแƒแƒ’แƒแƒœแƒซแƒฃแƒ แƒ˜แƒกแƒ, แƒกแƒแƒ›แƒแƒ แƒ—แƒšแƒ˜แƒแƒœแƒ˜

Productive Suffixes

Suffix Examples
-แƒก แƒ“แƒ แƒ”แƒ˜แƒ™แƒก, แƒ›แƒแƒ•แƒ แƒ˜แƒ™แƒ˜แƒแƒกแƒก, แƒ“แƒ แƒแƒฉแƒแƒก
-แƒ˜ แƒ‘แƒแƒœแƒ˜แƒจแƒ”แƒ•แƒกแƒ™แƒ˜, แƒ”แƒ’แƒ–แƒ”แƒ›แƒžแƒšแƒแƒ แƒจแƒ˜, แƒกแƒแƒ›แƒแƒ แƒ—แƒšแƒ˜แƒแƒœแƒ˜
-แƒ˜แƒก แƒžแƒแƒ แƒ›แƒ”แƒšแƒ˜แƒก, แƒ˜แƒแƒกแƒแƒ แƒ˜แƒก, แƒงแƒฃแƒกแƒแƒ แƒ˜แƒก
-แƒ แƒ™แƒ˜แƒ แƒฅแƒ•แƒ˜แƒกแƒแƒ, แƒ–แƒ”แƒ“แƒแƒ›แƒ˜แƒแƒชแƒ”แƒœแƒ˜แƒกแƒ, แƒกแƒแƒ’แƒแƒœแƒซแƒฃแƒ แƒ˜แƒกแƒ
-แƒแƒœ แƒ“แƒ˜แƒแƒ™แƒแƒœแƒ—แƒแƒœ, แƒ”แƒ แƒ“แƒ›แƒแƒœ, แƒ‘แƒ แƒ˜แƒขแƒแƒœแƒ”แƒšแƒ”แƒ‘แƒ˜แƒกแƒแƒ’แƒแƒœ
-แƒœ แƒ“แƒ˜แƒแƒ™แƒแƒœแƒ—แƒแƒœ, แƒ”แƒ แƒ“แƒ›แƒแƒœ, แƒ‘แƒ แƒ˜แƒขแƒแƒœแƒ”แƒšแƒ”แƒ‘แƒ˜แƒกแƒแƒ’แƒแƒœ
-แƒšแƒ˜ แƒ›แƒแƒ แƒฏแƒแƒœแƒ˜แƒจแƒ•แƒ˜แƒšแƒ˜, แƒฉแƒแƒ›แƒแƒจแƒแƒ แƒ”แƒ‘แƒฃแƒšแƒ˜, แƒ“แƒแƒžแƒงแƒ แƒแƒ‘แƒšแƒ˜
-แƒกแƒ แƒ–แƒ”แƒ“แƒแƒ›แƒ˜แƒแƒชแƒ”แƒœแƒ˜แƒกแƒ, แƒกแƒแƒ’แƒแƒœแƒซแƒฃแƒ แƒ˜แƒกแƒ, แƒขแƒงแƒ•แƒ˜แƒแƒ•แƒ˜แƒกแƒ

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
แƒ”แƒ—แƒ˜แƒก 1.85x 194 contexts แƒฉแƒ”แƒ—แƒ˜แƒก, แƒจแƒ”แƒ—แƒ˜แƒก, แƒ‘แƒ”แƒ—แƒ˜แƒก
แƒ”แƒšแƒ”แƒ‘ 1.48x 550 contexts แƒ”แƒšแƒ”แƒ‘แƒ˜, แƒ™แƒ”แƒšแƒ”แƒ‘, แƒฏแƒ”แƒšแƒ”แƒ‘
แƒ›แƒ“แƒ”แƒ’ 2.33x 52 contexts แƒ”แƒ›แƒ“แƒ”แƒ’, แƒจแƒแƒ›แƒ“แƒ”แƒ’, แƒ“แƒแƒ›แƒ“แƒ”แƒ’
แƒ”แƒœแƒ”แƒ‘ 1.41x 544 contexts แƒ”แƒœแƒ”แƒ‘แƒ, แƒ”แƒœแƒ”แƒ‘แƒ˜, แƒ”แƒœแƒ”แƒ‘แƒก
แƒ”แƒ‘แƒฃแƒš 1.59x 250 contexts แƒฅแƒ”แƒ‘แƒฃแƒš, แƒ™แƒ แƒ”แƒ‘แƒฃแƒš, แƒฅแƒ”แƒ‘แƒฃแƒšแƒ˜
แƒ“แƒ’แƒ”แƒœ 1.75x 134 contexts แƒแƒ“แƒ’แƒ”แƒœแƒก, แƒ•แƒแƒ“แƒ’แƒ”แƒœ, แƒฃแƒ“แƒ’แƒ”แƒœแƒก
แƒแƒ แƒ—แƒ• 1.68x 147 contexts แƒฅแƒแƒ แƒ—แƒ•, แƒ›แƒแƒ แƒ—แƒ•แƒ”, แƒฉแƒแƒ แƒ—แƒ•แƒ
แƒ แƒ—แƒ•แƒ” 1.81x 96 contexts แƒ›แƒแƒ แƒ—แƒ•แƒ”, แƒ แƒ—แƒ•แƒ”แƒšแƒก, แƒฅแƒแƒ แƒ—แƒ•แƒ”
แƒแƒ›แƒ”แƒš 1.63x 118 contexts แƒขแƒแƒ›แƒ”แƒš, แƒ แƒแƒ›แƒ”แƒš, แƒ“แƒแƒ›แƒ”แƒšแƒ˜
แƒœแƒขแƒ”แƒ  1.51x 148 contexts แƒฃแƒœแƒขแƒ”แƒ , แƒ˜แƒœแƒขแƒ”แƒ , แƒ”แƒœแƒขแƒ”แƒ 
แƒแƒ•แƒšแƒ” 1.43x 180 contexts แƒกแƒแƒ•แƒšแƒ”, แƒแƒ•แƒšแƒ”แƒœ, แƒžแƒแƒ•แƒšแƒ”
แƒแƒšแƒแƒฅ 1.58x 106 contexts แƒฅแƒแƒšแƒแƒฅ, แƒ›แƒแƒšแƒแƒฅ, แƒ“แƒแƒšแƒแƒฅแƒก

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-แƒ› -แƒก 186 words แƒ›แƒแƒœแƒแƒขแƒแƒœแƒฃแƒ แƒแƒ‘แƒ˜แƒก, แƒ›แƒแƒกแƒฃแƒšแƒ˜แƒจแƒ•แƒ˜แƒšแƒก
-แƒ› -แƒ˜ 167 words แƒ›แƒฎแƒแƒขแƒ•แƒ แƒ”แƒ‘แƒจแƒ˜, แƒ›แƒ”แƒšแƒแƒœแƒฅแƒแƒšแƒ˜แƒ™แƒฃแƒ แƒ˜
-แƒ› -แƒ 129 words แƒ›แƒฆแƒ”แƒ‘แƒแƒ•แƒ—แƒ, แƒ›แƒแƒœแƒ“แƒ˜แƒšแƒแƒกแƒœแƒ”แƒ‘แƒ›แƒ
-แƒ -แƒ˜ 124 words แƒแƒšแƒขแƒ”แƒœแƒ‘แƒฃแƒ แƒ’แƒจแƒ˜, แƒแƒขแƒ™แƒ˜แƒœแƒ˜
-แƒ -แƒก 120 words แƒแƒšแƒ“แƒ”แƒก, แƒแƒœแƒ“แƒ”แƒ แƒกแƒแƒœแƒ˜แƒก
-แƒ’แƒ -แƒ 111 words แƒ’แƒแƒ›แƒ”แƒ’แƒ–แƒแƒ•แƒ แƒ, แƒ’แƒแƒ™แƒ แƒ˜แƒขแƒ˜แƒ™แƒ”แƒ‘แƒ
-แƒ› -แƒ˜แƒก 104 words แƒ›แƒแƒœแƒแƒขแƒแƒœแƒฃแƒ แƒแƒ‘แƒ˜แƒก, แƒ›แƒฃแƒกแƒแƒœแƒ“แƒแƒ›แƒ˜แƒก
-แƒ -แƒ 93 words แƒแƒ‘แƒ แƒ”แƒ•แƒ˜แƒแƒชแƒ˜แƒ, แƒแƒ˜แƒฃแƒ—แƒแƒ˜แƒ
-แƒก -แƒก 88 words แƒกแƒ˜แƒกแƒšแƒ”แƒ˜แƒก, แƒกแƒ™แƒ˜แƒแƒ แƒแƒก
-แƒก -แƒ˜ 82 words แƒกแƒแƒคแƒ แƒ—แƒฎแƒ”แƒจแƒ˜, แƒกแƒขแƒ”แƒ แƒ”แƒแƒกแƒ™แƒแƒžแƒฃแƒšแƒ˜

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
แƒ“แƒแƒ™แƒแƒ แƒ’แƒ•แƒแƒกแƒ แƒ“แƒแƒ™แƒแƒ แƒ’แƒ•แƒ-แƒก-แƒ 7.5 แƒก
แƒžแƒ”แƒ“แƒ˜แƒแƒขแƒ แƒ˜แƒแƒกแƒ แƒžแƒ”แƒ“แƒ˜แƒแƒขแƒ แƒ˜แƒ-แƒก-แƒ 7.5 แƒก
แƒ˜แƒœแƒ“แƒ˜แƒ™แƒแƒขแƒแƒ แƒ”แƒ‘แƒ˜แƒ แƒ˜แƒœแƒ“แƒ˜แƒ™แƒแƒขแƒแƒ แƒ”แƒ‘-แƒ˜-แƒ 7.5 แƒ˜
แƒ™แƒแƒ แƒœแƒแƒฎแƒแƒ‘แƒ“แƒแƒ— แƒ™แƒแƒ แƒœแƒแƒฎแƒแƒ‘แƒ“-แƒ-แƒ— 7.5 แƒ
แƒœแƒแƒชแƒ˜แƒแƒœแƒแƒšแƒ˜แƒ–แƒ›แƒกแƒ แƒœแƒแƒชแƒ˜แƒแƒœแƒแƒšแƒ˜แƒ–แƒ›-แƒก-แƒ 7.5 แƒก
แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•แƒแƒ–แƒ” แƒ›แƒ˜แƒ›แƒแƒฎแƒ˜แƒšแƒ•-แƒ-แƒ–แƒ” 7.5 แƒ
แƒ›แƒ”แƒขแƒงแƒ”แƒ•แƒ”แƒแƒ‘แƒแƒจแƒ˜ แƒ›แƒ”แƒขแƒงแƒ”แƒ•แƒ”แƒแƒ‘-แƒ-แƒจแƒ˜ 7.5 แƒ
แƒแƒ แƒ˜แƒกแƒขแƒแƒ™แƒ แƒแƒขแƒ˜แƒ แƒแƒ แƒ˜แƒกแƒขแƒแƒ™แƒ แƒแƒข-แƒ˜-แƒ 7.5 แƒ˜
แƒ’แƒแƒ“แƒแƒฃแƒฎแƒ“แƒ”แƒšแƒแƒ‘แƒแƒก แƒ’แƒแƒ“แƒแƒฃแƒฎแƒ“แƒ”แƒšแƒแƒ‘-แƒ-แƒก 7.5 แƒ
ะฟั€ะพะฒะธะฝั†ะธะธแƒแƒกแƒ ะฟั€ะพะฒะธะฝั†ะธะธแƒ-แƒก-แƒ 7.5 แƒก
แƒซแƒ”แƒ’แƒšแƒ”แƒ‘แƒกแƒแƒช แƒซแƒ”แƒ’แƒšแƒ”แƒ‘-แƒก-แƒแƒช 7.5 แƒก
แƒ™แƒแƒœแƒคแƒ˜แƒกแƒ™แƒแƒชแƒ˜แƒแƒกแƒ แƒ™แƒแƒœแƒคแƒ˜แƒกแƒ™แƒแƒชแƒ˜แƒ-แƒก-แƒ 7.5 แƒก
แƒแƒ แƒแƒ™แƒแƒขแƒแƒ™แƒแƒจแƒ˜ แƒแƒ แƒแƒ™แƒแƒขแƒแƒ™-แƒ-แƒจแƒ˜ 7.5 แƒ
แƒ›แƒแƒœแƒแƒ™แƒ แƒ˜แƒกแƒขแƒแƒšแƒ˜ แƒ›แƒแƒœแƒแƒ™แƒ แƒ˜แƒกแƒข-แƒ-แƒšแƒ˜ 7.5 แƒ
แƒฐแƒแƒšแƒแƒœแƒ“แƒ˜แƒแƒก แƒฐแƒแƒšแƒแƒœแƒ“แƒ˜-แƒ-แƒก 7.5 แƒ

6.6 Linguistic Interpretation

Automated Insight: The language Georgian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (5.03x)
N-gram 2-gram Lowest perplexity (423)
Markov Context-4 Highest predictability (97.2%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) ร— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

Rยฒ (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: Rยฒ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: Rยฒ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-10 11:10:47