cy / README.md
omarkamali's picture
Upload all models and assets for cy (latest)
76aa9a4 verified
metadata
language: cy
language_name: Welsh
language_family: celtic_brythonic
tags:
  - wikilangs
  - nlp
  - tokenizer
  - embeddings
  - n-gram
  - markov
  - wikipedia
  - feature-extraction
  - sentence-similarity
  - tokenization
  - n-grams
  - markov-chain
  - text-mining
  - fasttext
  - babelvec
  - vocabulous
  - vocabulary
  - monolingual
  - family-celtic_brythonic
license: mit
library_name: wikilangs
pipeline_tag: text-generation
datasets:
  - omarkamali/wikipedia-monthly
dataset_info:
  name: wikipedia-monthly
  description: Monthly snapshots of Wikipedia articles across 300+ languages
metrics:
  - name: best_compression_ratio
    type: compression
    value: 4.109
  - name: best_isotropy
    type: isotropy
    value: 0.842
  - name: vocabulary_size
    type: vocab
    value: 0
generated: 2026-01-04T00:00:00.000Z

Welsh - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Welsh Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

📋 Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.346x 3.35 0.0427% 894,556
16k 3.678x 3.68 0.0469% 813,770
32k 3.925x 3.93 0.0501% 762,670
64k 4.109x 🏆 4.11 0.0524% 728,422

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Canwr opera o Ganada oedd Jonathan Stewart Vickers, CC (29 Hydref – 10 Gorffenna...

Vocab Tokens Count
8k ▁canwr ▁opera ▁o ▁ganada ▁oedd ▁jonathan ▁stewart ▁v ick ers ... (+30 more) 40
16k ▁canwr ▁opera ▁o ▁ganada ▁oedd ▁jonathan ▁stewart ▁vick ers , ... (+27 more) 37
32k ▁canwr ▁opera ▁o ▁ganada ▁oedd ▁jonathan ▁stewart ▁vick ers , ... (+26 more) 36
64k ▁canwr ▁opera ▁o ▁ganada ▁oedd ▁jonathan ▁stewart ▁vickers , ▁cc ... (+22 more) 32

Sample 2: Pêl-droediwr o Japan yw (ganed 11 Rhagfyr Tîm Cenedlaethol Tîm cenedlaethol Dole...

Vocab Tokens Count
8k ▁pêl - droediwr ▁o ▁japan ▁yw ▁( ganed ▁ 1 ... (+15 more) 25
16k ▁pêl - droediwr ▁o ▁japan ▁yw ▁( ganed ▁ 1 ... (+15 more) 25
32k ▁pêl - droediwr ▁o ▁japan ▁yw ▁( ganed ▁ 1 ... (+15 more) 25
64k ▁pêl - droediwr ▁o ▁japan ▁yw ▁( ganed ▁ 1 ... (+15 more) 25

Sample 3: Clostridium tetani yw'r bacteria sy'n achosi Tetanws.

Vocab Tokens Count
8k ▁cl ost rid ium ▁t et ani ▁yw ' r ... (+13 more) 23
16k ▁cl ost rid ium ▁t et ani ▁yw ' r ... (+12 more) 22
32k ▁cl ost rid ium ▁tet ani ▁yw ' r ▁bacteria ... (+8 more) 18
64k ▁cl ost rid ium ▁tet ani ▁yw ' r ▁bacteria ... (+8 more) 18

Key Findings

  • Best Compression: 64k achieves 4.109x compression
  • Lowest UNK Rate: 8k with 0.0427% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 17,960 14.13 742,720 26.5% 49.5%
2-gram Subword 266 🏆 8.05 14,977 67.6% 99.3%
3-gram Word 34,403 15.07 1,470,847 23.6% 43.7%
3-gram Subword 2,056 11.01 96,402 28.1% 74.0%
4-gram Word 58,140 15.83 2,520,966 20.5% 39.2%
4-gram Subword 9,573 13.22 505,960 17.0% 48.0%
5-gram Word 66,270 16.02 2,303,277 18.6% 36.6%
5-gram Subword 29,179 14.83 1,685,188 12.7% 38.3%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 unol daleithiau 486,479
2 daleithiau america 459,399
3 y ffilm 330,346
4 y cyfarwyddwr 255,174
5 o ffilmiau 249,770

3-grams (Word):

Rank N-gram Count
1 unol daleithiau america 447,977
2 daleithiau america saesneg 189,392
3 gan y cyfarwyddwr 147,806
4 gan gynnwys y 143,480
5 gynnwys y canlynol 142,458

4-grams (Word):

Rank N-gram Count
1 unol daleithiau america saesneg 183,879
2 gan gynnwys y canlynol 142,457
3 o ffilmiau gan gynnwys 141,034
4 nifer o ffilmiau gan 141,018
5 ffilmiau gan gynnwys y 141,004

5-grams (Word):

Rank N-gram Count
1 nifer o ffilmiau gan gynnwys 141,016
2 o ffilmiau gan gynnwys y 141,003
3 ffilmiau gan gynnwys y canlynol 140,997
4 y nodwyd cyhoeddwyd y ffilm 140,932
5 fel y nodwyd cyhoeddwyd y 140,932

2-grams (Subword):

Rank N-gram Count
1 n _ 6,965,988
2 d _ 6,143,531
3 _ y 5,977,485
4 d d 5,740,307
5 _ a 5,232,448

3-grams (Subword):

Rank N-gram Count
1 y n _ 2,646,508
2 d d _ 2,490,077
3 _ y n 2,304,841
4 w y d 2,285,145
5 _ y _ 2,240,041

4-grams (Subword):

Rank N-gram Count
1 _ y n _ 2,171,280
2 f i l m 1,586,546
3 f f i l 1,571,751
4 _ f f i 1,455,954
5 i l m _ 1,222,896

5-grams (Subword):

Rank N-gram Count
1 f f i l m 1,569,304
2 _ f f i l 1,419,063
3 f i l m _ 1,222,863
4 _ g a n _ 924,207
5 w y d _ y 781,315

Key Findings

  • Best Perplexity: 2-gram (subword) with 266
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~38% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.9977 1.997 9.84 671,269 0.2%
1 Subword 1.0862 2.123 6.65 8,673 0.0%
2 Word 0.3690 1.291 2.18 6,591,949 63.1%
2 Subword 0.6157 1.532 3.90 57,679 38.4%
3 Word 0.1502 1.110 1.34 14,351,859 85.0%
3 Subword 0.6340 1.552 3.78 225,011 36.6%
4 Word 0.0687 🏆 1.049 1.14 19,154,889 93.1%
4 Subword 0.6561 1.576 3.40 850,309 34.4%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. y ffindir gweler hefyd cyhoeddodd nifer o r almaen almaenegno unknown value the white ship mutiny
  2. yn ystod eang derbyniad gweler hefyd rhestr goch yr enw tacson delwedd gwlad dyddiad a 22
  3. o leiaf 1 050 o ffilmiau gan nifer o fariau cul o awstria almaeneg cyfeiriadau gan

Context Size 2:

  1. unol daleithiau america rhamantaidd gyda llai na 10 o actorion lleisiol a olygwyd gan mogens skot ha...
  2. daleithiau america cyfeiriadau gan gyfarwyddwyr ffilm gwrywaidd saesneg du a gwyn o japan mud sydd a...
  3. y ffilm hon yw warner baxter stuart erwin edmund lowe cafodd ei ddanfon gan fyddin a adwaenid

Context Size 3:

  1. unol daleithiau america in every womans life unol daleithiau america saesneg the boys from brazil a ...
  2. daleithiau america saesneg cyfeiriadau gan gyfarwyddwyr ffilm gwrywaidd tsieceg o tsiecoslofacia gyd...
  3. gan y cyfarwyddwr kevin billington yw the rise of the nazis stalingrad fernsehepisode y deyrnas uned...

Context Size 4:

  1. unol daleithiau america saesneg o unol daleithiau america arswyd o unol daleithiau america comedi gy...
  2. gan gynnwys y canlynol cyfeiriadau lliw lliw o sbaen rhamantaidd o sbaen sbaeneg o sbaen comedi gyda...
  3. o ffilmiau gan gynnwys y canlynol ffilm delwedd gwlad iaith wreiddiol dyddiad coyote summer unol dal...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _o/uchomau_dcolm
  2. adankeegoeei'cho
  3. elm_seratir,_pae

Context Size 2:

  1. n_gannwyddyd_gwed
  2. d_rasalanc_wr_pon
  3. _y_faraithia_cymg

Context Size 3:

  1. yn_wreidd_gwyn_cyh
  2. dd_a_10,700_strwyd
  3. _yn_coln,_sy'n_alm

Context Size 4:

  1. _yn_sydd_('cyfarwyd
  2. filmio_oeddwyd,_cyh
  3. ffilm_hon_walter,_j

Key Findings

  • Best Predictability: Context-4 (word) with 93.1% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (850,309 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 360,120
Total Tokens 54,213,529
Mean Frequency 150.54
Median Frequency 5
Frequency Std Dev 7791.16

Most Common Words

Rank Word Frequency
1 y 2,261,654
2 yn 2,177,991
3 o 1,594,538
4 a 1,391,156
5 ffilm 1,218,819
6 gan 925,486
7 r 723,127
8 i 650,709
9 yr 521,021
10 daleithiau 501,348

Least Common Words (from vocabulary)

Rank Word Frequency
1 geirfaoedd 2
2 volcabulaire 2
3 ethnolog 2
4 siculu 2
5 metafonetig 2
6 prano 2
7 defynydd 2
8 clwsterau 2
9 ŋm 2
10 ŋw 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.1638
R² (Goodness of Fit) 0.998189
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 49.6%
Top 1,000 72.6%
Top 5,000 84.6%
Top 10,000 88.7%

Key Findings

  • Zipf Compliance: R²=0.9982 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 49.6% of corpus
  • Long Tail: 350,120 words needed for remaining 11.3% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8420 🏆 0.3264 N/A N/A
mono_64d 64 0.8198 0.2681 N/A N/A
mono_128d 128 0.7807 0.2230 N/A N/A
aligned_32d 32 0.8420 0.3314 0.2180 0.6520
aligned_64d 64 0.8198 0.2651 0.3480 0.7540
aligned_128d 128 0.7807 0.2238 0.5000 0.8640

Key Findings

  • Best Isotropy: mono_32d with 0.8420 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2730. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 50.0% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.043 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples

Productive Suffixes

Suffix Examples
-er menschenfresser, spengler, giessler
-dd cwmnioedd, ailysgrifennodd, maswedd
-on cenawon, pittston, dimson
-au llinachau, rygiau, halennau
-en vorsitzenden, misshandlingen, ddiacen

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
iada 2.24x 67 contexts riada, viada, diada
efyd 2.21x 69 contexts hefyd, lefyd, efydd
ddio 1.98x 84 contexts addio, ddiog, ddios
feir 2.03x 69 contexts feiro, feira, sfeir
nnwy 2.19x 46 contexts annwyl, annwyd, gynnwy
leit 2.36x 32 contexts leite, fleit, leith
yddi 1.71x 121 contexts fyddi, byddi, dyddio
dwyd 2.14x 43 contexts nodwyd, ildwyd, codwyd
ithi 1.55x 152 contexts deithi, teithi, rithio
alei 2.30x 26 contexts dalei, malei, maleia
adau 2.02x 40 contexts badau, gadau, fadau
eddw 1.67x 49 contexts feddw, weddw, meddw

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

No significant affix co-occurrences detected.

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
deiamwntau deiamwnt-au 4.5 deiamwnt
croniclau cronicl-au 4.5 cronicl
komödianten komödiant-en 4.5 komödiant
recruiter recruit-er 4.5 recruit
diffiniodd diffinio-dd 4.5 diffinio
catholicon catholic-on 4.5 catholic
telesgopau telesgop-au 4.5 telesgop
canlyniadau canlyniad-au 4.5 canlyniad
lluswydden lluswy-dd-en 3.0 lluswy
organeddau organe-dd-au 3.0 organe
chynffonau chynff-on-au 3.0 chynff
wastadeddau wastade-dd-au 3.0 wastade
ffilmymgyrchydd ffilmymgyrchy-dd 1.5 ffilmymgyrchy
stabilizer stabiliz-er 1.5 stabiliz
effeithiolrwydd effeithiolrwy-dd 1.5 effeithiolrwy

6.6 Linguistic Interpretation

Automated Insight: The language Welsh shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.11x)
N-gram 2-gram Lowest perplexity (266)
Markov Context-4 Highest predictability (93.1%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

R² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-04 02:01:49