lwm / README.md
Sadjad Alikhani
Update README.md
cd5c518 verified
|
raw
history blame
6.02 kB

Here’s the enhanced and polished version of the entire README.md for your LWM: Large Wireless Model repository:


πŸ“‘ LWM: Large Wireless Model

Welcome to the LWM (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the DeepMIMO dataset. Follow the instructions below to clone the repository, load the data, and perform inference with LWM.


πŸ›  How to Use

1. Clone the Repository

To get started, clone the Hugging Face repository to your local machine with the following Python code:

import subprocess
import os
import sys
import importlib.util
import torch

# Hugging Face public repository URL
repo_url = "https://huggingface.co/sadjadalikhani/LWM"

# Directory where the repo will be cloned
clone_dir = "./LWM"

# Step 1: Clone the repository if it hasn't been cloned already
if not os.path.exists(clone_dir):
    print(f"Cloning repository from {repo_url} into {clone_dir}...")
    result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)

    if result.returncode != 0:
        print(f"Error cloning repository: {result.stderr}")
        sys.exit(1)
    print(f"Repository cloned successfully into {clone_dir}")
else:
    print(f"Repository already cloned into {clone_dir}")

# Step 2: Add the cloned directory to Python path
sys.path.append(clone_dir)

# Step 3: Import necessary functions
def import_functions_from_file(module_name, file_path):
    try:
        spec = importlib.util.spec_from_file_location(module_name, file_path)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)

        for function_name in dir(module):
            if callable(getattr(module, function_name)) and not function_name.startswith("__"):
                globals()[function_name] = getattr(module, function_name)
        return module
    except FileNotFoundError:
        print(f"Error: {file_path} not found!")
        sys.exit(1)

# Step 4: Import functions from the repository
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
print("All required functions imported successfully.")

2. Load the LWM Model

Once the repository is cloned, load the pre-trained LWM model using the following code:

# Step 5: Load the LWM model (with flexibility for the device)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)

3. Load the DeepMIMO Dataset

Load the DeepMIMO dataset using the pre-defined loading function:

# Step 6: Load dataset (direct call, no module prefix)
print("Loading DeepMIMO dataset...")
deepmimo_data = load_DeepMIMO_data()

4. Tokenize the DeepMIMO Dataset

Tokenize the dataset based on specific scenarios from DeepMIMO. Below is a list of available scenarios and their links for more information:

Scenario City Link to DeepMIMO Page
Scenario 0 Denver DeepMIMO City Scenario 18
Scenario 1 Indianapolis DeepMIMO City Scenario 15
Scenario 2 Oklahoma DeepMIMO City Scenario 19
Scenario 3 Fort Worth DeepMIMO City Scenario 12
Scenario 4 Santa Clara DeepMIMO City Scenario 11
Scenario 5 San Diego DeepMIMO City Scenario 7

Operational Settings:

  • Antennas at BS: 32
  • Antennas at UEs: 1
  • Subcarriers: 32
  • Paths: 20

Tokenization Code:

Select and tokenize specific scenarios by adjusting the scenario_idxs. In the example below, we select the first two scenarios.

# Step 7: Tokenize the dataset
scenario_idxs = torch.arange(2)  # Adjust the number of scenarios you want
print("Tokenizing the dataset...")
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
  • The dataset will be tokenized according to the selected scenarios and preprocessing configurations.

5. LWM Inference

Once the dataset is tokenized, generate either raw channels or the inferred LWM embeddings by choosing the input type.

# Step 8: Generate the dataset for inference
input_type = ['cls_emb', 'channel_emb', 'raw'][1]  # Modify input type as needed
dataset = dataset_gen(preprocessed_chs, input_type, model)

You can choose between:

  • cls_emb: LWM CLS token embeddings
  • channel_emb: LWM channel embeddings
  • raw: Raw wireless channel data

πŸ”„ Post-processing for Downstream Task

1. Use the Dataset in Downstream Tasks

Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.

# Step 9: Print results
print(f"Dataset generated with shape: {dataset.shape}")
print("Inference completed successfully.")

πŸ“‹ Requirements

  • Python 3.x
  • PyTorch