Sadjad Alikhani
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,92 +1,100 @@
|
|
1 |
-
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
## How to Use
|
6 |
-
|
7 |
-
### LWM Inference
|
8 |
-
|
9 |
-
1. **Clone the Repository**
|
10 |
-
|
11 |
-
Clone the Hugging Face repository to your local machine using the following code:
|
12 |
|
13 |
-
|
14 |
-
import subprocess
|
15 |
-
import os
|
16 |
-
import sys
|
17 |
-
import importlib.util
|
18 |
-
import torch
|
19 |
|
20 |
-
|
21 |
-
repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
22 |
|
23 |
-
|
24 |
-
clone_dir = "./LWM"
|
25 |
|
26 |
-
|
27 |
-
if not os.path.exists(clone_dir):
|
28 |
-
print(f"Cloning repository from {repo_url} into {clone_dir}...")
|
29 |
-
result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
|
30 |
|
31 |
-
|
32 |
-
print(f"Error cloning repository: {result.stderr}")
|
33 |
-
sys.exit(1) # Exit on failure
|
34 |
-
print(f"Repository cloned successfully into {clone_dir}")
|
35 |
-
else:
|
36 |
-
print(f"Repository already cloned into {clone_dir}")
|
37 |
|
38 |
-
|
39 |
-
sys.path.append(clone_dir)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
for function_name in dir(module):
|
50 |
-
if callable(getattr(module, function_name)) and not function_name.startswith("__"):
|
51 |
-
globals()[function_name] = getattr(module, function_name)
|
52 |
|
53 |
-
|
54 |
-
except FileNotFoundError:
|
55 |
-
print(f"Error: {file_path} not found!")
|
56 |
-
sys.exit(1)
|
57 |
|
58 |
-
|
59 |
-
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
|
60 |
-
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
|
61 |
-
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
|
62 |
-
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
|
63 |
-
print("All required functions imported successfully.")
|
64 |
-
```
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
# Step 5: Load the LWM model (with flexibility for the device)
|
72 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
73 |
-
print(f"Loading the LWM model on {device}...")
|
74 |
-
model = LWM.from_pretrained(device=device)
|
75 |
-
```
|
76 |
|
77 |
-
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
# Step 6: Load dataset (direct call, no module prefix)
|
83 |
-
print("Loading DeepMIMO dataset...")
|
84 |
-
deepmimo_data = load_DeepMIMO_data()
|
85 |
-
```
|
86 |
|
87 |
-
4. **Tokenize the DeepMIMO Dataset**
|
88 |
|
89 |
-
|
90 |
|
91 |
| **Scenario** | **City** | **Link to DeepMIMO Page** |
|
92 |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------|
|
@@ -104,7 +112,7 @@ After loading the dataset, you can tokenize the DeepMIMO dataset based on specif
|
|
104 |
- **Paths**: 20
|
105 |
|
106 |
#### **Tokenization Code**:
|
107 |
-
|
108 |
|
109 |
```python
|
110 |
# Step 7: Tokenize the dataset
|
@@ -113,39 +121,42 @@ print("Tokenizing the dataset...")
|
|
113 |
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
|
114 |
```
|
115 |
|
116 |
-
-
|
117 |
-
- The dataset will be tokenized according to the chosen scenarios and preprocessing configurations.
|
118 |
|
119 |
---
|
120 |
|
121 |
-
|
|
|
|
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
# Step 8: Generate the dataset for inference (direct call, no module prefix)
|
129 |
-
input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
|
130 |
-
dataset = dataset_gen(preprocessed_chs, input_type, model)
|
131 |
-
```
|
132 |
|
133 |
-
|
134 |
|
135 |
-
1. **Use the Dataset in Downstream Tasks**
|
136 |
|
137 |
-
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
---
|
146 |
|
147 |
-
|
148 |
|
149 |
-
- Python 3.x
|
150 |
-
- PyTorch
|
151 |
-
- Git
|
|
|
1 |
+
Here’s the enhanced and polished version of the entire `README.md` for your **LWM: Large Wireless Model** repository:
|
2 |
|
3 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# 📡 **LWM: Large Wireless Model**
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to clone the repository, load the data, and perform inference with LWM.
|
|
|
8 |
|
9 |
+
---
|
|
|
10 |
|
11 |
+
## 🛠**How to Use**
|
|
|
|
|
|
|
12 |
|
13 |
+
### 1. **Clone the Repository**
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
To get started, clone the Hugging Face repository to your local machine with the following Python code:
|
|
|
16 |
|
17 |
+
```python
|
18 |
+
import subprocess
|
19 |
+
import os
|
20 |
+
import sys
|
21 |
+
import importlib.util
|
22 |
+
import torch
|
23 |
+
|
24 |
+
# Hugging Face public repository URL
|
25 |
+
repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
26 |
+
|
27 |
+
# Directory where the repo will be cloned
|
28 |
+
clone_dir = "./LWM"
|
29 |
+
|
30 |
+
# Step 1: Clone the repository if it hasn't been cloned already
|
31 |
+
if not os.path.exists(clone_dir):
|
32 |
+
print(f"Cloning repository from {repo_url} into {clone_dir}...")
|
33 |
+
result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
|
34 |
+
|
35 |
+
if result.returncode != 0:
|
36 |
+
print(f"Error cloning repository: {result.stderr}")
|
37 |
+
sys.exit(1)
|
38 |
+
print(f"Repository cloned successfully into {clone_dir}")
|
39 |
+
else:
|
40 |
+
print(f"Repository already cloned into {clone_dir}")
|
41 |
+
|
42 |
+
# Step 2: Add the cloned directory to Python path
|
43 |
+
sys.path.append(clone_dir)
|
44 |
+
|
45 |
+
# Step 3: Import necessary functions
|
46 |
+
def import_functions_from_file(module_name, file_path):
|
47 |
+
try:
|
48 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
49 |
+
module = importlib.util.module_from_spec(spec)
|
50 |
+
spec.loader.exec_module(module)
|
51 |
+
|
52 |
+
for function_name in dir(module):
|
53 |
+
if callable(getattr(module, function_name)) and not function_name.startswith("__"):
|
54 |
+
globals()[function_name] = getattr(module, function_name)
|
55 |
+
return module
|
56 |
+
except FileNotFoundError:
|
57 |
+
print(f"Error: {file_path} not found!")
|
58 |
+
sys.exit(1)
|
59 |
+
|
60 |
+
# Step 4: Import functions from the repository
|
61 |
+
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
|
62 |
+
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
|
63 |
+
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
|
64 |
+
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
|
65 |
+
print("All required functions imported successfully.")
|
66 |
+
```
|
67 |
|
68 |
+
---
|
|
|
|
|
|
|
69 |
|
70 |
+
### 2. **Load the LWM Model**
|
|
|
|
|
|
|
71 |
|
72 |
+
Once the repository is cloned, load the pre-trained **LWM** model using the following code:
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
```python
|
75 |
+
# Step 5: Load the LWM model (with flexibility for the device)
|
76 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
77 |
+
print(f"Loading the LWM model on {device}...")
|
78 |
+
model = LWM.from_pretrained(device=device)
|
79 |
+
```
|
80 |
|
81 |
+
---
|
82 |
|
83 |
+
### 3. **Load the DeepMIMO Dataset**
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
Load the DeepMIMO dataset using the pre-defined loading function:
|
86 |
|
87 |
+
```python
|
88 |
+
# Step 6: Load dataset (direct call, no module prefix)
|
89 |
+
print("Loading DeepMIMO dataset...")
|
90 |
+
deepmimo_data = load_DeepMIMO_data()
|
91 |
+
```
|
92 |
|
93 |
+
---
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
### 4. **Tokenize the DeepMIMO Dataset**
|
96 |
|
97 |
+
Tokenize the dataset based on specific scenarios from DeepMIMO. Below is a list of available scenarios and their links for more information:
|
98 |
|
99 |
| **Scenario** | **City** | **Link to DeepMIMO Page** |
|
100 |
|---------------|---------------|----------------------------------------------------------------------------------------------------------------|
|
|
|
112 |
- **Paths**: 20
|
113 |
|
114 |
#### **Tokenization Code**:
|
115 |
+
Select and tokenize specific scenarios by adjusting the `scenario_idxs`. In the example below, we select the first two scenarios.
|
116 |
|
117 |
```python
|
118 |
# Step 7: Tokenize the dataset
|
|
|
121 |
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
|
122 |
```
|
123 |
|
124 |
+
- The dataset will be tokenized according to the selected scenarios and preprocessing configurations.
|
|
|
125 |
|
126 |
---
|
127 |
|
128 |
+
### 5. **LWM Inference**
|
129 |
+
|
130 |
+
Once the dataset is tokenized, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
|
131 |
|
132 |
+
```python
|
133 |
+
# Step 8: Generate the dataset for inference
|
134 |
+
input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
|
135 |
+
dataset = dataset_gen(preprocessed_chs, input_type, model)
|
136 |
+
```
|
137 |
|
138 |
+
You can choose between:
|
139 |
+
- `cls_emb`: LWM CLS token embeddings
|
140 |
+
- `channel_emb`: LWM channel embeddings
|
141 |
+
- `raw`: Raw wireless channel data
|
142 |
|
143 |
+
---
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
## 🔄 **Post-processing for Downstream Task**
|
146 |
|
147 |
+
### 1. **Use the Dataset in Downstream Tasks**
|
148 |
|
149 |
+
Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
|
150 |
|
151 |
+
```python
|
152 |
+
# Step 9: Print results
|
153 |
+
print(f"Dataset generated with shape: {dataset.shape}")
|
154 |
+
print("Inference completed successfully.")
|
155 |
+
```
|
156 |
|
157 |
---
|
158 |
|
159 |
+
## 📋 **Requirements**
|
160 |
|
161 |
+
- **Python 3.x**
|
162 |
+
- **PyTorch**
|
|