Sadjad Alikhani commited on
Commit
cd5c518
·
verified ·
1 Parent(s): bfaa02d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -93
README.md CHANGED
@@ -1,92 +1,100 @@
1
- # LWM: Large Wireless Model
2
 
3
- This repository contains the implementation of **LWM** (Large Wireless Model), a pre-trained model for processing and extracting features from wireless communication datasets, specifically DeepMIMO. The instructions below will help you load DeepMIMO data, use the LWM model and weights, tokenize DeepMIMO scenario data, and generate either raw channels or the inferred LWM CLS or channel embeddings.
4
-
5
- ## How to Use
6
-
7
- ### LWM Inference
8
-
9
- 1. **Clone the Repository**
10
-
11
- Clone the Hugging Face repository to your local machine using the following code:
12
 
13
- ```python
14
- import subprocess
15
- import os
16
- import sys
17
- import importlib.util
18
- import torch
19
 
20
- # Hugging Face public repository URL
21
- repo_url = "https://huggingface.co/sadjadalikhani/LWM"
22
 
23
- # Directory where the repo will be cloned
24
- clone_dir = "./LWM"
25
 
26
- # Step 1: Clone the repository if it hasn't been cloned already
27
- if not os.path.exists(clone_dir):
28
- print(f"Cloning repository from {repo_url} into {clone_dir}...")
29
- result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
30
 
31
- if result.returncode != 0:
32
- print(f"Error cloning repository: {result.stderr}")
33
- sys.exit(1) # Exit on failure
34
- print(f"Repository cloned successfully into {clone_dir}")
35
- else:
36
- print(f"Repository already cloned into {clone_dir}")
37
 
38
- # Step 2: Add the cloned directory to Python path
39
- sys.path.append(clone_dir)
40
 
41
- # Step 3: Dynamic module import and function exposure
42
- def import_functions_from_file(module_name, file_path):
43
- try:
44
- spec = importlib.util.spec_from_file_location(module_name, file_path)
45
- module = importlib.util.module_from_spec(spec)
46
- spec.loader.exec_module(module)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- # Extract functions from the module and make them globally accessible
49
- for function_name in dir(module):
50
- if callable(getattr(module, function_name)) and not function_name.startswith("__"):
51
- globals()[function_name] = getattr(module, function_name)
52
 
53
- return module
54
- except FileNotFoundError:
55
- print(f"Error: {file_path} not found!")
56
- sys.exit(1)
57
 
58
- # Step 4: Import necessary functions
59
- import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
60
- import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
61
- import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
62
- import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
63
- print("All required functions imported successfully.")
64
- ```
65
 
66
- 2. **Load the LWM Model**
 
 
 
 
 
67
 
68
- After cloning the repository, you can load the LWM model with the following code:
69
 
70
- ```python
71
- # Step 5: Load the LWM model (with flexibility for the device)
72
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
73
- print(f"Loading the LWM model on {device}...")
74
- model = LWM.from_pretrained(device=device)
75
- ```
76
 
77
- 3. **Load the DeepMIMO Dataset**
78
 
79
- Load the DeepMIMO dataset with this code:
 
 
 
 
80
 
81
- ```python
82
- # Step 6: Load dataset (direct call, no module prefix)
83
- print("Loading DeepMIMO dataset...")
84
- deepmimo_data = load_DeepMIMO_data()
85
- ```
86
 
87
- 4. **Tokenize the DeepMIMO Dataset**
88
 
89
- After loading the dataset, you can tokenize the DeepMIMO dataset based on specific scenarios. The table below lists the available scenarios, their corresponding DeepMIMO pages, and relevant details:
90
 
91
  | **Scenario** | **City** | **Link to DeepMIMO Page** |
92
  |---------------|---------------|----------------------------------------------------------------------------------------------------------------|
@@ -104,7 +112,7 @@ After loading the dataset, you can tokenize the DeepMIMO dataset based on specif
104
  - **Paths**: 20
105
 
106
  #### **Tokenization Code**:
107
- You can adjust the number of scenarios by changing the `scenario_idxs`. In the example below, scenario 0 and 1 are selected.
108
 
109
  ```python
110
  # Step 7: Tokenize the dataset
@@ -113,39 +121,42 @@ print("Tokenizing the dataset...")
113
  preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
114
  ```
115
 
116
- - Use the `scenario_idxs` variable to select specific scenarios from the DeepMIMO dataset.
117
- - The dataset will be tokenized according to the chosen scenarios and preprocessing configurations.
118
 
119
  ---
120
 
121
- This format separates the **scenarios**, **operational settings**, and the **code** clearly, making it more readable. The table provides a structured overview of the available scenarios with direct links to their respective pages on DeepMIMO.
 
 
122
 
123
- 5. **LWM Inference**
 
 
 
 
124
 
125
- Choose the type of data you want to generate from the tokenized dataset, such as `cls_emb`, `channel_emb`, or `raw`:
 
 
 
126
 
127
- ```python
128
- # Step 8: Generate the dataset for inference (direct call, no module prefix)
129
- input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
130
- dataset = dataset_gen(preprocessed_chs, input_type, model)
131
- ```
132
 
133
- ### Post-processing for Downstream Task
134
 
135
- 1. **Use the Dataset in Downstream Tasks**
136
 
137
- Finally, you can use the generated raw channels and their inferred LWM embeddings in your downstream tasks:
138
 
139
- ```python
140
- # Step 9: Print results
141
- print(f"Dataset generated with shape: {dataset.shape}")
142
- print("Inference completed successfully.")
143
- ```
144
 
145
  ---
146
 
147
- ### Requirements
148
 
149
- - Python 3.x
150
- - PyTorch
151
- - Git
 
1
+ Here’s the enhanced and polished version of the entire `README.md` for your **LWM: Large Wireless Model** repository:
2
 
3
+ ---
 
 
 
 
 
 
 
 
4
 
5
+ # 📡 **LWM: Large Wireless Model**
 
 
 
 
 
6
 
7
+ Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to clone the repository, load the data, and perform inference with LWM.
 
8
 
9
+ ---
 
10
 
11
+ ## 🛠 **How to Use**
 
 
 
12
 
13
+ ### 1. **Clone the Repository**
 
 
 
 
 
14
 
15
+ To get started, clone the Hugging Face repository to your local machine with the following Python code:
 
16
 
17
+ ```python
18
+ import subprocess
19
+ import os
20
+ import sys
21
+ import importlib.util
22
+ import torch
23
+
24
+ # Hugging Face public repository URL
25
+ repo_url = "https://huggingface.co/sadjadalikhani/LWM"
26
+
27
+ # Directory where the repo will be cloned
28
+ clone_dir = "./LWM"
29
+
30
+ # Step 1: Clone the repository if it hasn't been cloned already
31
+ if not os.path.exists(clone_dir):
32
+ print(f"Cloning repository from {repo_url} into {clone_dir}...")
33
+ result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
34
+
35
+ if result.returncode != 0:
36
+ print(f"Error cloning repository: {result.stderr}")
37
+ sys.exit(1)
38
+ print(f"Repository cloned successfully into {clone_dir}")
39
+ else:
40
+ print(f"Repository already cloned into {clone_dir}")
41
+
42
+ # Step 2: Add the cloned directory to Python path
43
+ sys.path.append(clone_dir)
44
+
45
+ # Step 3: Import necessary functions
46
+ def import_functions_from_file(module_name, file_path):
47
+ try:
48
+ spec = importlib.util.spec_from_file_location(module_name, file_path)
49
+ module = importlib.util.module_from_spec(spec)
50
+ spec.loader.exec_module(module)
51
+
52
+ for function_name in dir(module):
53
+ if callable(getattr(module, function_name)) and not function_name.startswith("__"):
54
+ globals()[function_name] = getattr(module, function_name)
55
+ return module
56
+ except FileNotFoundError:
57
+ print(f"Error: {file_path} not found!")
58
+ sys.exit(1)
59
+
60
+ # Step 4: Import functions from the repository
61
+ import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
62
+ import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
63
+ import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
64
+ import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
65
+ print("All required functions imported successfully.")
66
+ ```
67
 
68
+ ---
 
 
 
69
 
70
+ ### 2. **Load the LWM Model**
 
 
 
71
 
72
+ Once the repository is cloned, load the pre-trained **LWM** model using the following code:
 
 
 
 
 
 
73
 
74
+ ```python
75
+ # Step 5: Load the LWM model (with flexibility for the device)
76
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
77
+ print(f"Loading the LWM model on {device}...")
78
+ model = LWM.from_pretrained(device=device)
79
+ ```
80
 
81
+ ---
82
 
83
+ ### 3. **Load the DeepMIMO Dataset**
 
 
 
 
 
84
 
85
+ Load the DeepMIMO dataset using the pre-defined loading function:
86
 
87
+ ```python
88
+ # Step 6: Load dataset (direct call, no module prefix)
89
+ print("Loading DeepMIMO dataset...")
90
+ deepmimo_data = load_DeepMIMO_data()
91
+ ```
92
 
93
+ ---
 
 
 
 
94
 
95
+ ### 4. **Tokenize the DeepMIMO Dataset**
96
 
97
+ Tokenize the dataset based on specific scenarios from DeepMIMO. Below is a list of available scenarios and their links for more information:
98
 
99
  | **Scenario** | **City** | **Link to DeepMIMO Page** |
100
  |---------------|---------------|----------------------------------------------------------------------------------------------------------------|
 
112
  - **Paths**: 20
113
 
114
  #### **Tokenization Code**:
115
+ Select and tokenize specific scenarios by adjusting the `scenario_idxs`. In the example below, we select the first two scenarios.
116
 
117
  ```python
118
  # Step 7: Tokenize the dataset
 
121
  preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
122
  ```
123
 
124
+ - The dataset will be tokenized according to the selected scenarios and preprocessing configurations.
 
125
 
126
  ---
127
 
128
+ ### 5. **LWM Inference**
129
+
130
+ Once the dataset is tokenized, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
131
 
132
+ ```python
133
+ # Step 8: Generate the dataset for inference
134
+ input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
135
+ dataset = dataset_gen(preprocessed_chs, input_type, model)
136
+ ```
137
 
138
+ You can choose between:
139
+ - `cls_emb`: LWM CLS token embeddings
140
+ - `channel_emb`: LWM channel embeddings
141
+ - `raw`: Raw wireless channel data
142
 
143
+ ---
 
 
 
 
144
 
145
+ ## 🔄 **Post-processing for Downstream Task**
146
 
147
+ ### 1. **Use the Dataset in Downstream Tasks**
148
 
149
+ Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
150
 
151
+ ```python
152
+ # Step 9: Print results
153
+ print(f"Dataset generated with shape: {dataset.shape}")
154
+ print("Inference completed successfully.")
155
+ ```
156
 
157
  ---
158
 
159
+ ## 📋 **Requirements**
160
 
161
+ - **Python 3.x**
162
+ - **PyTorch**