File size: 11,849 Bytes
d1ca721 82e37e3 5eb4bc1 82e37e3 d1ca721 5eb4bc1 82e37e3 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 6a75443 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 82e37e3 d1ca721 82e37e3 5eb4bc1 d1ca721 5eb4bc1 d1ca721 82e37e3 5eb4bc1 82e37e3 5eb4bc1 82e37e3 5eb4bc1 82e37e3 5eb4bc1 82e37e3 5eb4bc1 82e37e3 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 d1ca721 5eb4bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import subprocess
import os
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.optim import Adam
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
import csv, json, time
from sklearn.metrics import f1_score
from tqdm import tqdm # Progress bar
# ---------------------------------------------------------
# DATA GENERATION PART: Clone repositories and prepare data
# ---------------------------------------------------------
def clone_dataset_scenario(repo_url, model_repo_dir="./LWM", scenarios_dir="scenarios"):
"""
Clones all scenarios from a repository, ensuring all files (small and large) are downloaded.
"""
current_dir = os.path.basename(os.getcwd())
if current_dir == "LWM":
model_repo_dir = "."
scenarios_path = os.path.join(model_repo_dir, scenarios_dir)
os.makedirs(scenarios_path, exist_ok=True)
original_dir = os.getcwd()
try:
if os.path.exists(scenarios_path):
shutil.rmtree(scenarios_path)
print("Cloning entire repository into temporary directory ...")
subprocess.run(["git", "clone", repo_url, scenarios_path], check=True)
os.chdir(scenarios_path)
print("Pulling all files using Git LFS ...")
subprocess.run(["git", "lfs", "install"], check=True)
subprocess.run(["git", "lfs", "pull"], check=True)
print(f"Successfully cloned all scenarios into {scenarios_path}")
except subprocess.CalledProcessError as e:
print(f"Error cloning scenarios: {str(e)}")
finally:
if os.path.exists(scenarios_path):
shutil.rmtree(scenarios_path)
os.chdir(original_dir)
# Clone model repository if not already present.
model_repo_url = "https://huggingface.co/wi-lab/lwm"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Clone dataset repository (scenarios)
dataset_repo_url = "https://huggingface.co/datasets/wi-lab/lwm"
clone_dataset_scenario(dataset_repo_url, model_repo_dir)
# Change working directory to model repository.
if os.path.exists(model_repo_dir):
os.chdir(model_repo_dir)
print(f"Changed working directory to {os.getcwd()}")
else:
print(f"Directory {model_repo_dir} does not exist. Please check if the repository is cloned properly.")
# Import tokenizer and LWM model from the repository.
from input_preprocess import tokenizer
from lwm_model import lwm
# Define scenario names and select one (or more).
scenario_names = np.array([
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
])
# Select the first scenario (index 0) – adjust as needed.
scenario_idxs = np.array([0, 1, 2, 3, 4, 5])
selected_scenario_names = scenario_names[scenario_idxs]
snr_db = None
preprocessed_chs, deepmimo_data = tokenizer(
selected_scenario_names=selected_scenario_names,
manual_data=None,
gen_raw=True,
snr_db=snr_db
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device} ...")
lwm_model = lwm.from_pretrained(device=device)
# Import inference functions and generate the dataset.
from inference import lwm_inference, create_raw_dataset
input_types = ['cls_emb', 'channel_emb', 'raw']
selected_input_type = input_types[2] # choose one: 'cls_emb', 'channel_emb', or 'raw'
if selected_input_type in ['cls_emb', 'channel_emb']:
dataset = lwm_inference(preprocessed_chs, selected_input_type, lwm_model, device)
else:
dataset = create_raw_dataset(preprocessed_chs, device)
# At this point, `dataset` should be a torch Dataset yielding (data, target) pairs.
# ---------------------------------------------------------
# TRAINING PART: Beam Prediction Model (1D CNN) with Weighted F1 and Visualizations
# ---------------------------------------------------------
# Mapping for beam prediction input types.
mapping = {
'cls_emb': {'input_channels': 1, 'sequence_length': 64},
'channel_emb': {'input_channels': 64, 'sequence_length': 128},
'raw': {'input_channels': 16, 'sequence_length': 128}
}
input_type = selected_input_type # use the same type as for data generation
params = mapping.get(input_type, mapping['raw'])
n_beams = 16 # adjust as needed
initial_lr = 0.001
num_classes = n_beams + 1 # as defined in your code
# Define Residual Block and the 1D CNN model.
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm1d(out_channels)
self.shortcut = nn.Sequential()
if in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
residual = x
x = F.relu(self.bn1(self.conv1(x)))
x = self.bn2(self.conv2(x))
x += self.shortcut(residual)
x = F.relu(x)
return x
class res1dcnn(nn.Module):
def __init__(self, input_channels, sequence_length, num_classes):
super(res1dcnn, self).__init__()
# Initial convolution and pooling layers.
self.conv1 = nn.Conv1d(input_channels, 32, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm1d(32)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
# Residual layers.
self.layer1 = self._make_layer(32, 32, 2)
self.layer2 = self._make_layer(32, 64, 3)
self.layer3 = self._make_layer(64, 128, 4)
# Compute flattened feature size.
with torch.no_grad():
dummy_input = torch.zeros(1, input_channels, sequence_length)
dummy_output = self.compute_conv_output(dummy_input)
self.flatten_size = dummy_output.numel()
# Fully connected layers.
self.fc1 = nn.Linear(self.flatten_size, 128)
self.bn_fc1 = nn.BatchNorm1d(128)
self.fc2 = nn.Linear(128, num_classes)
self.dropout = nn.Dropout(0.5)
def _make_layer(self, in_channels, out_channels, num_blocks):
layers = [ResidualBlock(in_channels, out_channels)]
for _ in range(1, num_blocks):
layers.append(ResidualBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def compute_conv_output(self, x):
x = self.maxpool(F.relu(self.bn1(self.conv1(x))))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = F.adaptive_avg_pool1d(x, 1)
return x
def forward(self, x):
# Expect x shape: [batch, sequence_length, input_channels]
x = x.transpose(1, 2) # -> [batch, input_channels, sequence_length]
x = self.compute_conv_output(x)
x = x.view(x.size(0), -1)
x = F.relu(self.bn_fc1(self.fc1(x)))
x = self.dropout(x)
x = self.fc2(x)
return x
# Instantiate the beam prediction model.
beam_model = res1dcnn(params['input_channels'], params['sequence_length'], num_classes).to(device)
optimizer = Adam(beam_model.parameters(), lr=initial_lr)
scheduler = MultiStepLR(optimizer, milestones=[15, 35], gamma=0.1)
num_epochs = 50
# Create DataLoaders (assuming `dataset` is a torch Dataset with (data, target) pairs).
batch_size = 32 # adjust as needed
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(dataset, batch_size=batch_size)
test_loader = DataLoader(dataset, batch_size=batch_size)
# Function to plot training metrics.
def plot_training_metrics(epochs, train_losses, val_losses, val_f1_scores, save_path=None):
plt.figure(figsize=(12, 5))
# Loss plot.
plt.subplot(1, 2, 1)
plt.plot(epochs, train_losses, label='Train Loss', marker='o')
plt.plot(epochs, val_losses, label='Validation Loss', marker='o')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss Curve')
plt.legend()
# F1 score plot.
plt.subplot(1, 2, 2)
plt.plot(epochs, val_f1_scores, label='Validation Weighted F1', marker='o', color='green')
plt.xlabel('Epoch')
plt.ylabel('Weighted F1 Score')
plt.title('F1 Score Curve')
plt.legend()
plt.tight_layout()
if save_path:
plt.savefig(save_path)
plt.show()
# Training loop with weighted F1 computation.
criterion = nn.CrossEntropyLoss()
train_losses = []
val_losses = []
val_f1_scores = []
epochs_list = []
for epoch in range(1, num_epochs + 1):
beam_model.train()
running_loss = 0.0
# Training with tqdm progress bar.
for data, target in tqdm(train_loader, desc=f"Epoch {epoch} Training", leave=False):
data, target = data.to(device), target.to(device)
# Adjust input shape based on type.
if input_type == 'raw':
data = data.view(data.size(0), params['sequence_length'], params['input_channels'])
elif input_type == 'cls_emb':
data = data.unsqueeze(2)
optimizer.zero_grad()
outputs = beam_model(data)
loss = criterion(outputs, target)
loss.backward()
torch.nn.utils.clip_grad_norm_(beam_model.parameters(), max_norm=1.0)
optimizer.step()
running_loss += loss.item() * data.size(0)
scheduler.step()
train_loss = running_loss / len(train_loader.dataset)
# Validation loop with tqdm.
beam_model.eval()
val_running_loss = 0.0
all_preds = []
all_targets = []
for data, target in tqdm(val_loader, desc=f"Epoch {epoch} Validation", leave=False):
data, target = data.to(device), target.to(device)
if input_type == 'raw':
data = data.view(data.size(0), params['sequence_length'], params['input_channels'])
elif input_type == 'cls_emb':
data = data.unsqueeze(2)
outputs = beam_model(data)
loss = criterion(outputs, target)
val_running_loss += loss.item() * data.size(0)
_, predicted = torch.max(outputs, 1)
all_preds.extend(predicted.cpu().numpy())
all_targets.extend(target.cpu().numpy())
val_loss = val_running_loss / len(val_loader.dataset)
val_f1 = f1_score(all_targets, all_preds, average='weighted')
epochs_list.append(epoch)
train_losses.append(train_loss)
val_losses.append(val_loss)
val_f1_scores.append(val_f1)
print(f"Epoch {epoch}/{num_epochs}: Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f} | Val Weighted F1: {val_f1:.4f}")
# Plot training metrics.
plot_training_metrics(epochs_list, train_losses, val_losses, val_f1_scores, save_path="training_metrics.png")
# Test evaluation with tqdm.
beam_model.eval()
test_running_loss = 0.0
correct = 0
total = 0
for data, target in tqdm(test_loader, desc="Testing"):
data, target = data.to(device), target.to(device)
if input_type == 'raw':
data = data.view(data.size(0), params['sequence_length'], params['input_channels'])
elif input_type == 'cls_emb':
data = data.unsqueeze(2)
outputs = beam_model(data)
loss = criterion(outputs, target)
test_running_loss += loss.item() * data.size(0)
_, predicted = torch.max(outputs, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
test_loss = test_running_loss / len(test_loader.dataset)
accuracy = 100 * correct / total
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {accuracy:.2f}%") |