File size: 2,105 Bytes
20acc58 f08058f 20acc58 f08058f 20acc58 f08058f 20acc58 e3d594f f08058f 20acc58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: tidy-tab-model-t5-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tidy-tab-model-t5-small
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9997
- Rouge1: 0.7404
- Rouge2: 0.6249
- Rougel: 0.7403
- Rougelsum: 0.7413
- Gen Len: 6.9017
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 32
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.3461 | 3.7879 | 500 | 1.0711 | 0.7407 | 0.6192 | 0.736 | 0.7374 | 7.188 |
| 1.0075 | 7.5758 | 1000 | 0.9645 | 0.7313 | 0.6071 | 0.7304 | 0.7303 | 6.9274 |
| 0.7921 | 11.3636 | 1500 | 0.9563 | 0.7306 | 0.6079 | 0.7323 | 0.7325 | 6.7863 |
| 0.6587 | 15.1515 | 2000 | 0.9697 | 0.7382 | 0.6142 | 0.739 | 0.7397 | 6.8675 |
| 0.5579 | 18.9394 | 2500 | 0.9905 | 0.7388 | 0.6203 | 0.7378 | 0.7395 | 6.8718 |
| 0.4984 | 22.7273 | 3000 | 0.9997 | 0.7404 | 0.6249 | 0.7403 | 0.7413 | 6.9017 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|