File size: 24,629 Bytes
4b532c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
'''

modified by  lihaoweicv

pytorch version

'''

'''

M-LSD

Copyright 2021-present NAVER Corp.

Apache License v2.0

'''

import os
import numpy as np
import cv2
import torch
from  torch.nn import  functional as F


def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
    '''

    tpMap:

    center: tpMap[1, 0, :, :]

    displacement: tpMap[1, 1:5, :, :]

    '''
    b, c, h, w = tpMap.shape
    assert  b==1, 'only support bsize==1'
    displacement = tpMap[:, 1:5, :, :][0]
    center = tpMap[:, 0, :, :]
    heat = torch.sigmoid(center)
    hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
    keep = (hmax == heat).float()
    heat = heat * keep
    heat = heat.reshape(-1, )

    scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
    yy = torch.floor_divide(indices, w).unsqueeze(-1)
    xx = torch.fmod(indices, w).unsqueeze(-1)
    ptss = torch.cat((yy, xx),dim=-1)

    ptss   = ptss.detach().cpu().numpy()
    scores = scores.detach().cpu().numpy()
    displacement = displacement.detach().cpu().numpy()
    displacement = displacement.transpose((1,2,0))
    return  ptss, scores, displacement


def pred_lines(image, model,

               input_shape=[512, 512],

               score_thr=0.10,

               dist_thr=20.0):
    h, w, _ = image.shape
    h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]

    resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
                                    np.ones([input_shape[0], input_shape[1], 1])], axis=-1)

    resized_image = resized_image.transpose((2,0,1))
    batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
    batch_image = (batch_image / 127.5) - 1.0

    batch_image = torch.from_numpy(batch_image).float().cuda()
    outputs = model(batch_image)
    pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
    start = vmap[:, :, :2]
    end = vmap[:, :, 2:]
    dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))

    segments_list = []
    for center, score in zip(pts, pts_score):
        y, x = center
        distance = dist_map[y, x]
        if score > score_thr and distance > dist_thr:
            disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
            x_start = x + disp_x_start
            y_start = y + disp_y_start
            x_end = x + disp_x_end
            y_end = y + disp_y_end
            segments_list.append([x_start, y_start, x_end, y_end])

    lines = 2 * np.array(segments_list)  # 256 > 512
    lines[:, 0] = lines[:, 0] * w_ratio
    lines[:, 1] = lines[:, 1] * h_ratio
    lines[:, 2] = lines[:, 2] * w_ratio
    lines[:, 3] = lines[:, 3] * h_ratio

    return lines


def pred_squares(image,

                 model,

                 input_shape=[512, 512],

                 params={'score': 0.06,

                         'outside_ratio': 0.28,

                         'inside_ratio': 0.45,

                         'w_overlap': 0.0,

                         'w_degree': 1.95,

                         'w_length': 0.0,

                         'w_area': 1.86,

                         'w_center': 0.14}):
    '''

    shape = [height, width]

    '''
    h, w, _ = image.shape
    original_shape = [h, w]

    resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
                                    np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
    resized_image = resized_image.transpose((2, 0, 1))
    batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
    batch_image = (batch_image / 127.5) - 1.0

    batch_image = torch.from_numpy(batch_image).float().cuda()
    outputs = model(batch_image)

    pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
    start = vmap[:, :, :2]  # (x, y)
    end = vmap[:, :, 2:]  # (x, y)
    dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))

    junc_list = []
    segments_list = []
    for junc, score in zip(pts, pts_score):
        y, x = junc
        distance = dist_map[y, x]
        if score > params['score'] and distance > 20.0:
            junc_list.append([x, y])
            disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
            d_arrow = 1.0
            x_start = x + d_arrow * disp_x_start
            y_start = y + d_arrow * disp_y_start
            x_end = x + d_arrow * disp_x_end
            y_end = y + d_arrow * disp_y_end
            segments_list.append([x_start, y_start, x_end, y_end])

    segments = np.array(segments_list)

    ####### post processing for squares
    # 1. get unique lines
    point = np.array([[0, 0]])
    point = point[0]
    start = segments[:, :2]
    end = segments[:, 2:]
    diff = start - end
    a = diff[:, 1]
    b = -diff[:, 0]
    c = a * start[:, 0] + b * start[:, 1]

    d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
    theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
    theta[theta < 0.0] += 180
    hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)

    d_quant = 1
    theta_quant = 2
    hough[:, 0] //= d_quant
    hough[:, 1] //= theta_quant
    _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)

    acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
    idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
    yx_indices = hough[indices, :].astype('int32')
    acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
    idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices

    acc_map_np = acc_map
    # acc_map = acc_map[None, :, :, None]
    #
    # ### fast suppression using tensorflow op
    # acc_map = tf.constant(acc_map, dtype=tf.float32)
    # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
    # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
    # flatten_acc_map = tf.reshape(acc_map, [1, -1])
    # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
    # _, h, w, _ = acc_map.shape
    # y = tf.expand_dims(topk_indices // w, axis=-1)
    # x = tf.expand_dims(topk_indices % w, axis=-1)
    # yx = tf.concat([y, x], axis=-1)

    ### fast suppression using pytorch op
    acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
    _,_, h, w = acc_map.shape
    max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
    acc_map = acc_map * ( (acc_map == max_acc_map).float() )
    flatten_acc_map = acc_map.reshape([-1, ])

    scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
    yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
    xx = torch.fmod(indices, w).unsqueeze(-1)
    yx = torch.cat((yy, xx), dim=-1)

    yx = yx.detach().cpu().numpy()

    topk_values = scores.detach().cpu().numpy()
    indices = idx_map[yx[:, 0], yx[:, 1]]
    basis = 5 // 2

    merged_segments = []
    for yx_pt, max_indice, value in zip(yx, indices, topk_values):
        y, x = yx_pt
        if max_indice == -1 or value == 0:
            continue
        segment_list = []
        for y_offset in range(-basis, basis + 1):
            for x_offset in range(-basis, basis + 1):
                indice = idx_map[y + y_offset, x + x_offset]
                cnt = int(acc_map_np[y + y_offset, x + x_offset])
                if indice != -1:
                    segment_list.append(segments[indice])
                if cnt > 1:
                    check_cnt = 1
                    current_hough = hough[indice]
                    for new_indice, new_hough in enumerate(hough):
                        if (current_hough == new_hough).all() and indice != new_indice:
                            segment_list.append(segments[new_indice])
                            check_cnt += 1
                        if check_cnt == cnt:
                            break
        group_segments = np.array(segment_list).reshape([-1, 2])
        sorted_group_segments = np.sort(group_segments, axis=0)
        x_min, y_min = sorted_group_segments[0, :]
        x_max, y_max = sorted_group_segments[-1, :]

        deg = theta[max_indice]
        if deg >= 90:
            merged_segments.append([x_min, y_max, x_max, y_min])
        else:
            merged_segments.append([x_min, y_min, x_max, y_max])

    # 2. get intersections
    new_segments = np.array(merged_segments)  # (x1, y1, x2, y2)
    start = new_segments[:, :2]  # (x1, y1)
    end = new_segments[:, 2:]  # (x2, y2)
    new_centers = (start + end) / 2.0
    diff = start - end
    dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))

    # ax + by = c
    a = diff[:, 1]
    b = -diff[:, 0]
    c = a * start[:, 0] + b * start[:, 1]
    pre_det = a[:, None] * b[None, :]
    det = pre_det - np.transpose(pre_det)

    pre_inter_y = a[:, None] * c[None, :]
    inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
    pre_inter_x = c[:, None] * b[None, :]
    inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
    inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')

    # 3. get corner information
    # 3.1 get distance
    '''

    dist_segments:

        | dist(0), dist(1), dist(2), ...|

    dist_inter_to_segment1:

        | dist(inter,0), dist(inter,0), dist(inter,0), ... |

        | dist(inter,1), dist(inter,1), dist(inter,1), ... |

        ...

    dist_inter_to_semgnet2:

        | dist(inter,0), dist(inter,1), dist(inter,2), ... |

        | dist(inter,0), dist(inter,1), dist(inter,2), ... |

        ...

    '''

    dist_inter_to_segment1_start = np.sqrt(
        np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    dist_inter_to_segment1_end = np.sqrt(
        np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    dist_inter_to_segment2_start = np.sqrt(
        np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]
    dist_inter_to_segment2_end = np.sqrt(
        np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True))  # [n_batch, n_batch, 1]

    # sort ascending
    dist_inter_to_segment1 = np.sort(
        np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
        axis=-1)  # [n_batch, n_batch, 2]
    dist_inter_to_segment2 = np.sort(
        np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
        axis=-1)  # [n_batch, n_batch, 2]

    # 3.2 get degree
    inter_to_start = new_centers[:, None, :] - inter_pts
    deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
    deg_inter_to_start[deg_inter_to_start < 0.0] += 360
    inter_to_end = new_centers[None, :, :] - inter_pts
    deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
    deg_inter_to_end[deg_inter_to_end < 0.0] += 360

    '''

    B -- G

    |    |

    C -- R

    B : blue / G: green / C: cyan / R: red



    0 -- 1

    |    |

    3 -- 2

    '''
    # rename variables
    deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
    # sort deg ascending
    deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)

    deg_diff_map = np.abs(deg1_map - deg2_map)
    # we only consider the smallest degree of intersect
    deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]

    # define available degree range
    deg_range = [60, 120]

    corner_dict = {corner_info: [] for corner_info in range(4)}
    inter_points = []
    for i in range(inter_pts.shape[0]):
        for j in range(i + 1, inter_pts.shape[1]):
            # i, j > line index, always i < j
            x, y = inter_pts[i, j, :]
            deg1, deg2 = deg_sort[i, j, :]
            deg_diff = deg_diff_map[i, j]

            check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]

            outside_ratio = params['outside_ratio']  # over ratio >>> drop it!
            inside_ratio = params['inside_ratio']  # over ratio >>> drop it!
            check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
                               dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
                              (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
                               dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
                             ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
                               dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
                              (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
                               dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))

            if check_degree and check_distance:
                corner_info = None

                if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
                        (deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
                    corner_info, color_info = 0, 'blue'
                elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
                    corner_info, color_info = 1, 'green'
                elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
                    corner_info, color_info = 2, 'black'
                elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
                        (deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
                    corner_info, color_info = 3, 'cyan'
                else:
                    corner_info, color_info = 4, 'red'  # we don't use it
                    continue

                corner_dict[corner_info].append([x, y, i, j])
                inter_points.append([x, y])

    square_list = []
    connect_list = []
    segments_list = []
    for corner0 in corner_dict[0]:
        for corner1 in corner_dict[1]:
            connect01 = False
            for corner0_line in corner0[2:]:
                if corner0_line in corner1[2:]:
                    connect01 = True
                    break
            if connect01:
                for corner2 in corner_dict[2]:
                    connect12 = False
                    for corner1_line in corner1[2:]:
                        if corner1_line in corner2[2:]:
                            connect12 = True
                            break
                    if connect12:
                        for corner3 in corner_dict[3]:
                            connect23 = False
                            for corner2_line in corner2[2:]:
                                if corner2_line in corner3[2:]:
                                    connect23 = True
                                    break
                            if connect23:
                                for corner3_line in corner3[2:]:
                                    if corner3_line in corner0[2:]:
                                        # SQUARE!!!
                                        '''

                                        0 -- 1

                                        |    |

                                        3 -- 2

                                        square_list:

                                            order: 0 > 1 > 2 > 3

                                            | x0, y0, x1, y1, x2, y2, x3, y3 |

                                            | x0, y0, x1, y1, x2, y2, x3, y3 |

                                            ...

                                        connect_list:

                                            order: 01 > 12 > 23 > 30

                                            | line_idx01, line_idx12, line_idx23, line_idx30 |

                                            | line_idx01, line_idx12, line_idx23, line_idx30 |

                                            ...

                                        segments_list:

                                            order: 0 > 1 > 2 > 3

                                            | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |

                                            | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |

                                            ...

                                        '''
                                        square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
                                        connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
                                        segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])

    def check_outside_inside(segments_info, connect_idx):
        # return 'outside or inside', min distance, cover_param, peri_param
        if connect_idx == segments_info[0]:
            check_dist_mat = dist_inter_to_segment1
        else:
            check_dist_mat = dist_inter_to_segment2

        i, j = segments_info
        min_dist, max_dist = check_dist_mat[i, j, :]
        connect_dist = dist_segments[connect_idx]
        if max_dist > connect_dist:
            return 'outside', min_dist, 0, 1
        else:
            return 'inside', min_dist, -1, -1

    top_square = None

    try:
        map_size = input_shape[0] / 2
        squares = np.array(square_list).reshape([-1, 4, 2])
        score_array = []
        connect_array = np.array(connect_list)
        segments_array = np.array(segments_list).reshape([-1, 4, 2])

        # get degree of corners:
        squares_rollup = np.roll(squares, 1, axis=1)
        squares_rolldown = np.roll(squares, -1, axis=1)
        vec1 = squares_rollup - squares
        normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
        vec2 = squares_rolldown - squares
        normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
        inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1)  # [n_squares, 4]
        squares_degree = np.arccos(inner_products) * 180 / np.pi  # [n_squares, 4]

        # get square score
        overlap_scores = []
        degree_scores = []
        length_scores = []

        for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
            '''

            0 -- 1

            |    |

            3 -- 2



            # segments: [4, 2]

            # connects: [4]

            '''

            ###################################### OVERLAP SCORES
            cover = 0
            perimeter = 0
            # check 0 > 1 > 2 > 3
            square_length = []

            for start_idx in range(4):
                end_idx = (start_idx + 1) % 4

                connect_idx = connects[start_idx]  # segment idx of segment01
                start_segments = segments[start_idx]
                end_segments = segments[end_idx]

                start_point = square[start_idx]
                end_point = square[end_idx]

                # check whether outside or inside
                start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
                                                                                                      connect_idx)
                end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)

                cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
                perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min

                square_length.append(
                    dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)

            overlap_scores.append(cover / perimeter)
            ######################################
            ###################################### DEGREE SCORES
            '''

            deg0 vs deg2

            deg1 vs deg3

            '''
            deg0, deg1, deg2, deg3 = degree
            deg_ratio1 = deg0 / deg2
            if deg_ratio1 > 1.0:
                deg_ratio1 = 1 / deg_ratio1
            deg_ratio2 = deg1 / deg3
            if deg_ratio2 > 1.0:
                deg_ratio2 = 1 / deg_ratio2
            degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
            ######################################
            ###################################### LENGTH SCORES
            '''

            len0 vs len2

            len1 vs len3

            '''
            len0, len1, len2, len3 = square_length
            len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
            len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
            length_scores.append((len_ratio1 + len_ratio2) / 2)

            ######################################

        overlap_scores = np.array(overlap_scores)
        overlap_scores /= np.max(overlap_scores)

        degree_scores = np.array(degree_scores)
        # degree_scores /= np.max(degree_scores)

        length_scores = np.array(length_scores)

        ###################################### AREA SCORES
        area_scores = np.reshape(squares, [-1, 4, 2])
        area_x = area_scores[:, :, 0]
        area_y = area_scores[:, :, 1]
        correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
        area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
        area_scores = 0.5 * np.abs(area_scores + correction)
        area_scores /= (map_size * map_size)  # np.max(area_scores)
        ######################################

        ###################################### CENTER SCORES
        centers = np.array([[256 // 2, 256 // 2]], dtype='float32')  # [1, 2]
        # squares: [n, 4, 2]
        square_centers = np.mean(squares, axis=1)  # [n, 2]
        center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
        center_scores = center2center / (map_size / np.sqrt(2.0))

        '''

        score_w = [overlap, degree, area, center, length]

        '''
        score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
        score_array = params['w_overlap'] * overlap_scores \
                      + params['w_degree'] * degree_scores \
                      + params['w_area'] * area_scores \
                      - params['w_center'] * center_scores \
                      + params['w_length'] * length_scores

        best_square = []

        sorted_idx = np.argsort(score_array)[::-1]
        score_array = score_array[sorted_idx]
        squares = squares[sorted_idx]

    except Exception as e:
        pass

    '''return list

    merged_lines, squares, scores

    '''

    try:
        new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
        new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
        new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
        new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
    except:
        new_segments = []

    try:
        squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
        squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
    except:
        squares = []
        score_array = []

    try:
        inter_points = np.array(inter_points)
        inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
        inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
    except:
        inter_points = []

    return new_segments, squares, score_array, inter_points