File size: 20,267 Bytes
4b532c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
Based on timm code base
https://github.com/rwightman/pytorch-image-models/tree/master/timm
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.vision_transformer import _cfg, PatchEmbed
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath
from timm.models.helpers import named_apply, adapt_input_conv
from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper
from lavis.models.base_model import BaseEncoder
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.attn_gradients = None
self.attention_map = None
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def save_attention_map(self, attention_map):
self.attention_map = attention_map
def get_attention_map(self):
return self.attention_map
def forward(self, x, register_hook=False):
B, N, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = (
qkv[0],
qkv[1],
qkv[2],
) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
if register_hook:
self.save_attention_map(attn)
attn.register_hook(self.save_attn_gradients)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_grad_checkpointing=False,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
if use_grad_checkpointing:
self.attn = checkpoint_wrapper(self.attn)
self.mlp = checkpoint_wrapper(self.mlp)
def forward(self, x, register_hook=False):
x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class VisionTransformer(nn.Module):
"""Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
representation_size=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=None,
use_grad_checkpointing=False,
ckpt_layer=0,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.patch_embed = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[i],
norm_layer=norm_layer,
use_grad_checkpointing=(
use_grad_checkpointing and i >= depth - ckpt_layer
),
)
for i in range(depth)
]
)
self.norm = norm_layer(embed_dim)
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def forward(self, x, register_blk=-1):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed[:, : x.size(1), :]
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x, register_blk == i)
x = self.norm(x)
return x
@torch.jit.ignore()
def load_pretrained(self, checkpoint_path, prefix=""):
_load_weights(self, checkpoint_path, prefix)
@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
"""Load weights from .npz checkpoints for official Google Brain Flax implementation"""
import numpy as np
def _n2p(w, t=True):
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
w = w.flatten()
if t:
if w.ndim == 4:
w = w.transpose([3, 2, 0, 1])
elif w.ndim == 3:
w = w.transpose([2, 0, 1])
elif w.ndim == 2:
w = w.transpose([1, 0])
return torch.from_numpy(w)
w = np.load(checkpoint_path)
if not prefix and "opt/target/embedding/kernel" in w:
prefix = "opt/target/"
if hasattr(model.patch_embed, "backbone"):
# hybrid
backbone = model.patch_embed.backbone
stem_only = not hasattr(backbone, "stem")
stem = backbone if stem_only else backbone.stem
stem.conv.weight.copy_(
adapt_input_conv(
stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])
)
)
stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
if not stem_only:
for i, stage in enumerate(backbone.stages):
for j, block in enumerate(stage.blocks):
bp = f"{prefix}block{i + 1}/unit{j + 1}/"
for r in range(3):
getattr(block, f"conv{r + 1}").weight.copy_(
_n2p(w[f"{bp}conv{r + 1}/kernel"])
)
getattr(block, f"norm{r + 1}").weight.copy_(
_n2p(w[f"{bp}gn{r + 1}/scale"])
)
getattr(block, f"norm{r + 1}").bias.copy_(
_n2p(w[f"{bp}gn{r + 1}/bias"])
)
if block.downsample is not None:
block.downsample.conv.weight.copy_(
_n2p(w[f"{bp}conv_proj/kernel"])
)
block.downsample.norm.weight.copy_(
_n2p(w[f"{bp}gn_proj/scale"])
)
block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
else:
embed_conv_w = adapt_input_conv(
model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"])
)
model.patch_embed.proj.weight.copy_(embed_conv_w)
model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
if pos_embed_w.shape != model.pos_embed.shape:
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
pos_embed_w,
model.pos_embed,
getattr(model, "num_tokens", 1),
model.patch_embed.grid_size,
)
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
for i, block in enumerate(model.blocks.children()):
block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
block.attn.qkv.weight.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T
for n in ("query", "key", "value")
]
)
)
block.attn.qkv.bias.copy_(
torch.cat(
[
_n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1)
for n in ("query", "key", "value")
]
)
)
block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
for r in range(2):
getattr(block.mlp, f"fc{r + 1}").weight.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"])
)
getattr(block.mlp, f"fc{r + 1}").bias.copy_(
_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"])
)
block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"]))
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
print("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape)
ntok_new = posemb_new.shape[1]
if num_tokens:
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
ntok_new -= num_tokens
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
print("Position embedding grid-size from %s to %s", [gs_old, gs_old], gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(
posemb_grid, size=gs_new, mode="bicubic", align_corners=False
)
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return
def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
# interpolate position embedding
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = visual_encoder.patch_embed.num_patches
num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches**0.5)
if orig_size != new_size:
# class_token and dist_token are kept unchanged
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(
-1, orig_size, orig_size, embedding_size
).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
print(
"reshape position embedding from %d to %d" % (orig_size**2, new_size**2)
)
return new_pos_embed
else:
return pos_embed_checkpoint
class VisionTransformerEncoder(VisionTransformer, BaseEncoder):
@classmethod
def from_config(cls, cfg, from_pretrained=False):
vit_type = cfg.get("vit_type", "base")
image_size = cfg.get("image_size", 384)
ckpt_layer = cfg.get("vit_ckpt_layer", 0)
drop_path_rate = cfg.get("vit_drop_path_rate", 0)
norm_layer_eps = cfg.get("vit_layer_norm_epsilon", -1)
use_grad_checkpointing = cfg.get("vit_grad_ckpt", False)
if norm_layer_eps == -1:
norm_layer = None
else:
norm_layer = partial(nn.LayerNorm, eps=norm_layer_eps)
# norm_layer=partial(nn.LayerNorm, eps=1e-6),
assert vit_type in ["base", "large"], "vit parameter must be base or large"
if vit_type == "base":
vision_width = 768
visual_encoder = cls(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=12,
num_heads=12,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0 or drop_path_rate,
norm_layer=norm_layer,
)
if from_pretrained:
checkpoint = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
map_location="cpu",
check_hash=True,
)
state_dict = checkpoint["model"]
state_dict["pos_embed"] = interpolate_pos_embed(
state_dict["pos_embed"], visual_encoder
)
msg = visual_encoder.load_state_dict(state_dict, strict=False)
elif vit_type == "large":
vision_width = 1024
visual_encoder = cls(
img_size=image_size,
patch_size=16,
embed_dim=vision_width,
depth=24,
num_heads=16,
use_grad_checkpointing=use_grad_checkpointing,
ckpt_layer=ckpt_layer,
drop_path_rate=0.1 or drop_path_rate,
norm_layer=norm_layer,
)
if from_pretrained:
from timm.models.helpers import load_custom_pretrained
from timm.models.vision_transformer import default_cfgs
load_custom_pretrained(
visual_encoder, default_cfgs["vit_large_patch16_224_in21k"]
)
visual_encoder.vision_width = vision_width
return visual_encoder
def forward_features(self, x, register_blk=-1):
return super().forward(x, register_blk)
|