File size: 6,215 Bytes
4b532c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import contextlib
import logging
import os
import time
import datetime
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F
import lavis.common.dist_utils as dist_utils
from lavis.common.dist_utils import download_cached_file
from lavis.common.utils import is_url
from lavis.common.logger import MetricLogger
from lavis.models.base_model import BaseModel
from lavis.models.blip2_models.Qformer import BertConfig, BertLMHeadModel
from lavis.models.eva_vit import create_eva_vit_g
from lavis.models.clip_vit import create_clip_vit_L
from transformers import BertTokenizer
class Blip2ProteinBase(BaseModel):
@classmethod
def init_tokenizer(cls, truncation_side="right"):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
return tokenizer
def maybe_autocast(self, dtype=torch.float16):
# if on cpu, don't use autocast
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
return torch.cuda.amp.autocast(dtype=dtype)
else:
return contextlib.nullcontext()
@classmethod
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = cross_attention_freq
encoder_config.query_length = num_query_token
Qformer = BertLMHeadModel.from_pretrained(
"bert-base-uncased", config=encoder_config
)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
def load_from_pretrained(self, url_or_filename):
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location="cpu")
else:
raise RuntimeError("checkpoint url or path is invalid")
state_dict = checkpoint["model"]
msg = self.load_state_dict(state_dict, strict=False)
# logging.info("Missing keys {}".format(msg.missing_keys))
logging.info("load checkpoint from %s" % url_or_filename)
return msg
def get_optimizer_params(self, weight_decay, lr_scale=1):
vit_num_layers = self.ln_vision.num_layers
lr_scales = list(lr_scale ** (vit_num_layers + 1 - i) for i in range(vit_num_layers + 2))
parameter_group_names = {}
parameter_group_vars = {}
for name, param in self.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias"):
group_name = "no_decay"
this_weight_decay = 0.
else:
group_name = "decay"
this_weight_decay = weight_decay
# if 'visual_encoder' in name:
# layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.',''))
# group_name = "vit_layer_%d_%s" % (layer_id, group_name)
# else:
# layer_id = None
if group_name not in parameter_group_names:
# if layer_id is not None:
# scale = lr_scales[layer_id]
# else:
# scale = 1
scale = 1
parameter_group_names[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name]["params"].append(param)
parameter_group_names[group_name]["params"].append(name)
# import json
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
optim_params = list(parameter_group_vars.values())
return optim_params
def _lemmatize(self, answers):
def apply(answer):
doc = self.lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@property
def lemmatizer(self):
if self._lemmatizer is None:
try:
import spacy
self._lemmatizer = spacy.load("en_core_web_sm")
except ImportError:
logging.error(
"""
Please install spacy and en_core_web_sm model to apply lemmatization.
python -m spacy download en_core_web_sm
OR
import spacy.cli
spacy.cli.download("en_core_web_sm")
"""
)
exit(1)
return self._lemmatizer |