File size: 8,048 Bytes
0fc1ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""

 # Copyright (c) 2022, salesforce.com, inc.

 # All rights reserved.

 # SPDX-License-Identifier: BSD-3-Clause

 # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause

"""

import os

import numpy as np
import streamlit as st
import torch
import torch.nn.functional as F
from app import cache_root, device
from app.utils import (
    getAttMap,
    init_bert_tokenizer,
    load_blip_itm_model,
    read_img,
    resize_img,
)
from lavis.models import load_model
from lavis.processors import load_processor


@st.cache(

    hash_funcs={

        torch.nn.parameter.Parameter: lambda parameter: parameter.data.detach()

        .cpu()

        .numpy()

    },

    allow_output_mutation=True,

)
def load_feat():
    from lavis.common.utils import download_url

    dirname = os.path.join(os.path.dirname(__file__), "assets")
    filename = "path2feat_coco_train2014.pth"
    filepath = os.path.join(dirname, filename)
    url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/path2feat_coco_train2014.pth"

    if not os.path.exists(filepath):
        download_url(url=url, root=dirname, filename="path2feat_coco_train2014.pth")

    path2feat = torch.load(filepath)
    paths = sorted(path2feat.keys())

    all_img_feats = torch.stack([path2feat[k] for k in paths], dim=0).to(device)

    return path2feat, paths, all_img_feats


@st.cache(

    hash_funcs={

        torch.nn.parameter.Parameter: lambda parameter: parameter.data.detach()

        .cpu()

        .numpy()

    },

    allow_output_mutation=True,

)
def load_feature_extractor_model(device):
    model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth"

    model = load_model(
        "blip_feature_extractor", model_type="base", is_eval=True, device=device
    )
    model.load_from_pretrained(model_url)

    return model


def app():
    # === layout ===
    model_type = st.sidebar.selectbox("Model:", ["BLIP_base", "BLIP_large"])
    file_root = os.path.join(cache_root, "coco/images/train2014/")

    values = [12, 24, 48]
    default_layer_num = values.index(24)
    num_display = st.sidebar.selectbox(
        "Number of images:", values, index=default_layer_num
    )
    show_gradcam = st.sidebar.selectbox("Show GradCam:", [True, False], index=1)
    itm_ranking = st.sidebar.selectbox("Multimodal re-ranking:", [True, False], index=0)

    # st.title('Multimodal Search')
    st.markdown(
        "<h1 style='text-align: center;'>Multimodal Search</h1>", unsafe_allow_html=True
    )

    # === event ===
    vis_processor = load_processor("blip_image_eval").build(image_size=384)
    text_processor = load_processor("blip_caption")

    user_question = st.text_input(
        "Search query", "A dog running on the grass.", help="Type something to search."
    )
    user_question = text_processor(user_question)
    feature_extractor = load_feature_extractor_model(device)

    # ======= ITC =========
    sample = {"text_input": user_question}

    with torch.no_grad():
        text_feature = feature_extractor.extract_features(
            sample, mode="text"
        ).text_embeds_proj[0, 0]

        path2feat, paths, all_img_feats = load_feat()
        all_img_feats.to(device)
        all_img_feats = F.normalize(all_img_feats, dim=1)

        num_cols = 4
        num_rows = int(num_display / num_cols)

        similarities = text_feature @ all_img_feats.T
        indices = torch.argsort(similarities, descending=True)[:num_display]

    top_paths = [paths[ind.detach().cpu().item()] for ind in indices]
    sorted_similarities = [similarities[idx] for idx in indices]
    filenames = [os.path.join(file_root, p) for p in top_paths]

    # ========= ITM and GradCam ==========
    bsz = 4  # max number of images to avoid cuda oom
    if model_type.startswith("BLIP"):
        blip_type = model_type.split("_")[1]

    itm_model = load_blip_itm_model(device, model_type=blip_type)

    tokenizer = init_bert_tokenizer()
    queries_batch = [user_question] * bsz
    queries_tok_batch = tokenizer(queries_batch, return_tensors="pt").to(device)

    num_batches = int(num_display / bsz)

    avg_gradcams = []
    all_raw_images = []
    itm_scores = []

    for i in range(num_batches):
        filenames_in_batch = filenames[i * bsz : (i + 1) * bsz]
        raw_images, images = read_and_process_images(filenames_in_batch, vis_processor)
        gradcam, itm_output = compute_gradcam_batch(
            itm_model, images, queries_batch, queries_tok_batch
        )

        all_raw_images.extend([resize_img(r_img) for r_img in raw_images])
        norm_imgs = [np.float32(r_img) / 255 for r_img in raw_images]

        for norm_img, grad_cam in zip(norm_imgs, gradcam):
            avg_gradcam = getAttMap(norm_img, grad_cam[0], blur=True)
            avg_gradcams.append(avg_gradcam)

        with torch.no_grad():
            itm_score = torch.nn.functional.softmax(itm_output, dim=1)

        itm_scores.append(itm_score)

    # ========= ITM re-ranking =========
    itm_scores = torch.cat(itm_scores)[:, 1]
    if itm_ranking:
        itm_scores_sorted, indices = torch.sort(itm_scores, descending=True)

        avg_gradcams_sorted = []
        all_raw_images_sorted = []
        for idx in indices:
            avg_gradcams_sorted.append(avg_gradcams[idx])
            all_raw_images_sorted.append(all_raw_images[idx])

        avg_gradcams = avg_gradcams_sorted
        all_raw_images = all_raw_images_sorted

    if show_gradcam:
        images_to_show = iter(avg_gradcams)
    else:
        images_to_show = iter(all_raw_images)

    for _ in range(num_rows):
        with st.container():
            for col in st.columns(num_cols):
                col.image(next(images_to_show), use_column_width=True, clamp=True)


def read_and_process_images(image_paths, vis_processor):
    raw_images = [read_img(path) for path in image_paths]
    images = [vis_processor(r_img) for r_img in raw_images]
    images_tensors = torch.stack(images).to(device)

    return raw_images, images_tensors


def compute_gradcam_batch(model, visual_input, text_input, tokenized_text, block_num=6):
    model.text_encoder.base_model.base_model.encoder.layer[
        block_num
    ].crossattention.self.save_attention = True

    output = model({"image": visual_input, "text_input": text_input}, match_head="itm")
    loss = output[:, 1].sum()

    model.zero_grad()
    loss.backward()
    with torch.no_grad():
        mask = tokenized_text.attention_mask.view(
            tokenized_text.attention_mask.size(0), 1, -1, 1, 1
        )  # (bsz,1,token_len, 1,1)
        token_length = mask.sum() - 2
        token_length = token_length.cpu()
        # grads and cams [bsz, num_head, seq_len, image_patch]
        grads = model.text_encoder.base_model.base_model.encoder.layer[
            block_num
        ].crossattention.self.get_attn_gradients()
        cams = model.text_encoder.base_model.base_model.encoder.layer[
            block_num
        ].crossattention.self.get_attention_map()

        # assume using vit large with 576 num image patch
        cams = cams[:, :, :, 1:].reshape(visual_input.size(0), 12, -1, 24, 24) * mask
        grads = (
            grads[:, :, :, 1:].clamp(0).reshape(visual_input.size(0), 12, -1, 24, 24)
            * mask
        )

        gradcam = cams * grads
        # [enc token gradcam, average gradcam across token, gradcam for individual token]
        # gradcam = torch.cat((gradcam[0:1,:], gradcam[1:token_length+1, :].sum(dim=0, keepdim=True)/token_length, gradcam[1:, :]))
        gradcam = gradcam.mean(1).cpu().detach()
        gradcam = (
            gradcam[:, 1 : token_length + 1, :].sum(dim=1, keepdim=True) / token_length
        )

    return gradcam, output