Add results
Browse files
README.md
CHANGED
@@ -1,3 +1,60 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- wenbopan/Fusang-v1
|
5 |
+
- wenbopan/OpenOrca-zh-20k
|
6 |
+
language:
|
7 |
+
- zh
|
8 |
+
- en
|
9 |
---
|
10 |
+
|
11 |
+
# Fi-9B
|
12 |
+
|
13 |
+
Fi-9B is an improved [Yi-9B-200K](https://huggingface.co/01-ai/Yi-9B-200K) with extensive instruction tuning on [Fusang-V1](https://huggingface.co/datasets/wenbopan/Fusang-v1).
|
14 |
+
|
15 |
+
Compare to Yi-9B-200K, Fi-9B gains greater capability at various downstream tasks and long-context modeling thanks to large-scale synthestic data in Fusang-V1.
|
16 |
+
|
17 |
+
## Performance
|
18 |
+
|
19 |
+
### Fact-based Evaluation
|
20 |
+
|
21 |
+
Fi is competitive amongst all models at ~9B size range:
|
22 |
+
|
23 |
+
| **Metric** | **winogrande** | **hellaswag** | **truthfulqa** | **ai2_arc** |
|
24 |
+
| ---------- | -------------- | ------------- | -------------- | ----------- |
|
25 |
+
| Yi-9B-200K | 0.7167 | 0.5672 | 0.3380 | 0.6925 |
|
26 |
+
| Fi-9B-200K | 0.7111 | **0.5728** | **0.4086** | **0.7258** |
|
27 |
+
|
28 |
+
### Long-context Modeling
|
29 |
+
|
30 |
+
Fi make even further progresses than Yi-9B-200K, which is already impressive in terms of handling long-range tasks:
|
31 |
+
|
32 |
+
Results on LongBench:
|
33 |
+
|
34 |
+
| **Name** | **Average_zh** | **Average_en** | **Code Completion** |
|
35 |
+
|-----------------|----------------|----------------|---------------------|
|
36 |
+
| Yi-9B-200K | 30.288 | 36.7071 | 72.2 |
|
37 |
+
| Fi-9B-200K | **41.092** | **40.9536** | 46.0 |
|
38 |
+
|
39 |
+
Detailed score decomposition on LongBench
|
40 |
+
|
41 |
+
| **Name** | **Few-shot Learning_en** | **Synthetic Tasks_en** | **Single-Doc QA_en** | **Multi-Doc QA_en** | **Summarization_en** | **Few-shot Learning_zh** | **Synthetic Tasks_zh** | **Single-Doc QA_zh** | **Multi-Doc QA_zh** | **Summarization_zh** |
|
42 |
+
|-----------------|--------------------------|------------------------|----------------------|---------------------|----------------------|--------------------------|------------------------|----------------------|---------------------|----------------------|
|
43 |
+
| Yi-9B-200K | 60.6 | 22.8 | 30.9 | 38.9 | 25.8 | 46.5 | 28.0 | 49.6 | 17.7 | 9.7 |
|
44 |
+
| Fi-9B-200K | **63.8** | **40.2** | **36.2** | 38.0 | **26.3** | 30.0 | **75.1** | **55.6** | **30.7** | **14.1** |
|
45 |
+
|
46 |
+
<!--### Performance on Preference TODO-->
|
47 |
+
|
48 |
+
### Bilingual Ability
|
49 |
+
|
50 |
+
Coming soon...
|
51 |
+
|
52 |
+
## How to use Fi
|
53 |
+
|
54 |
+
Coming soon...
|
55 |
+
|
56 |
+
## Current Limitations
|
57 |
+
|
58 |
+
This version of Fi-9B may not be able to stop generation in some scenarios. I will fix that soon.
|
59 |
+
|
60 |
+
Compare to the original Yi-9B-200K, Fi-9B has degraded ability for code completion. This may due to lack of raw code data during instruction tuning.
|