File size: 8,481 Bytes
65cfc3c c221986 65cfc3c c221986 65cfc3c c221986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
language: en
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/tinyroberta-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 78.8627
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDNlZDU4ODAxMzY5NGFiMTMyZmQ1M2ZhZjMyODA1NmFlOGMxNzYxNTA4OGE5YTBkZWViZjBkNGQ2ZmMxZjVlMCIsInZlcnNpb24iOjF9.Wgu599r6TvgMLTrHlLMVAbUtKD_3b70iJ5QSeDQ-bRfUsVk6Sz9OsJCp47riHJVlmSYzcDj_z_3jTcUjCFFXBg
- type: f1
value: 82.0355
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTFkMzEzMWNiZDRhMGZlODhkYzcwZTZiMDFjZDg2YjllZmUzYWM5NTgwNGQ2NGYyMDk2ZGQwN2JmMTE5NTc3YiIsInZlcnNpb24iOjF9.ChgaYpuRHd5WeDFjtiAHUyczxtoOD_M5WR8834jtbf7wXhdGOnZKdZ1KclmhoI5NuAGc1NptX-G0zQ5FTHEcBA
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 83.860
name: Exact Match
- type: f1
value: 90.752
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- type: exact_match
value: 25.967
name: Exact Match
- type: f1
value: 37.006
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_adversarial
type: squad_adversarial
config: AddOneSent
split: validation
metrics:
- type: exact_match
value: 76.329
name: Exact Match
- type: f1
value: 83.292
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts amazon
type: squadshifts
config: amazon
split: test
metrics:
- type: exact_match
value: 63.915
name: Exact Match
- type: f1
value: 78.395
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts new_wiki
type: squadshifts
config: new_wiki
split: test
metrics:
- type: exact_match
value: 80.297
name: Exact Match
- type: f1
value: 89.808
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts nyt
type: squadshifts
config: nyt
split: test
metrics:
- type: exact_match
value: 80.149
name: Exact Match
- type: f1
value: 88.321
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts reddit
type: squadshifts
config: reddit
split: test
metrics:
- type: exact_match
value: 66.959
name: Exact Match
- type: f1
value: 79.300
name: F1
---
**This repo contains the model exported to ONNX weights.**
**Everything is provided as-is.**
---
# tinyroberta-squad2
This is the *distilled* version of the [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) model. This model has a comparable prediction quality and runs at twice the speed of the base model.
## Overview
**Language model:** tinyroberta-squad2
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
**Infrastructure**: 4x Tesla v100
## Hyperparameters
```
batch_size = 96
n_epochs = 4
base_LM_model = "deepset/tinyroberta-squad2-step1"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride = 128
max_query_length = 64
distillation_loss_weight = 0.75
temperature = 1.5
teacher = "deepset/robert-large-squad2"
```
## Distillation
This model was distilled using the TinyBERT approach described in [this paper](https://arxiv.org/pdf/1909.10351.pdf) and implemented in [haystack](https://github.com/deepset-ai/haystack).
Firstly, we have performed intermediate layer distillation with roberta-base as the teacher which resulted in [deepset/tinyroberta-6l-768d](https://huggingface.co/deepset/tinyroberta-6l-768d).
Secondly, we have performed task-specific distillation with [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) as the teacher for further intermediate layer distillation on an augmented version of SQuADv2 and then with [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) as the teacher for prediction layer distillation.
## Usage
### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/tinyroberta-squad2")
# or
reader = TransformersReader(model_name_or_path="deepset/tinyroberta-squad2")
```
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/tinyroberta-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 78.69114798281817,
"f1": 81.9198998536977,
"total": 11873,
"HasAns_exact": 76.19770580296895,
"HasAns_f1": 82.66446878592329,
"HasAns_total": 5928,
"NoAns_exact": 81.17746005046257,
"NoAns_f1": 81.17746005046257,
"NoAns_total": 5945
```
## Authors
**Branden Chan:** branden.chan@deepset.ai
**Timo M枚ller:** timo.moeller@deepset.ai
**Malte Pietsch:** malte.pietsch@deepset.ai
**Tanay Soni:** tanay.soni@deepset.ai
**Michel Bartels:** michel.bartels@deepset.ai
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [roberta-base-squad2]([https://huggingface.co/deepset/roberta-base-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |