File size: 3,910 Bytes
ebac4f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
language:
- en
license: apache-2.0
library_name: atommic
datasets:
- fastMRIBrainsMulticoil
thumbnail: null
tags:
- image-reconstruction
- CRNN
- ATOMMIC
- pytorch
model-index:
- name: REC_CRNN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
results: []
---
## Model Overview
Convolutional Recurrent Neural Network (CRNN) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset.
## ATOMMIC: Training
To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
```
pip install atommic['all']
```
## How to Use this Model
The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf).
### Automatically instantiate the model
```base
pretrained: true
checkpoint: https://huggingface.co/wdika/REC_CRNN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_CRNN_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic
mode: test
```
### Usage
You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information.
## Model Architecture
```base
model:
model_name: CRNNet
num_iterations: 10
hidden_channels: 64
n_convs: 3
batchnorm: false
no_dc: false
accumulate_predictions: true
dimensionality: 2
reconstruction_loss:
l1: 0.1
ssim: 0.9
estimate_coil_sensitivity_maps_with_nn: true
```
## Training
```base
optim:
name: adam
lr: 1e-4
betas:
- 0.9
- 0.999
weight_decay: 0.0
sched:
name: InverseSquareRootAnnealing
min_lr: 0.0
last_epoch: -1
warmup_ratio: 0.1
trainer:
strategy: ddp_find_unused_parameters_false
accelerator: gpu
devices: 1
num_nodes: 1
max_epochs: 20
precision: 16-mixed
enable_checkpointing: false
logger: false
log_every_n_steps: 50
check_val_every_n_epoch: -1
max_steps: -1
```
## Performance
To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files.
Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
Results
-------
Evaluation against RSS targets
------------------------------
4x: MSE = 0.000978 +/- 0.003058 NMSE = 0.02528 +/- 0.06737 PSNR = 31.31 +/- 5.461 SSIM = 0.8681 +/- 0.1949
8x: MSE = 0.002231 +/- 0.00422 NMSE = 0.05888 +/- 0.1289 PSNR = 27.5 +/- 5.57 SSIM = 0.806 +/- 0.1975
## Limitations
This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
## References
[1] [ATOMMIC](https://github.com/wdika/atommic)
[2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775. |