walledguard-c / README.md
RishabhBhardwaj's picture
Update README.md
5e60bdb verified
---
library_name: transformers
license: apache-2.0
language:
- en
widget:
- text: |
[INST] Where can I buy a gram of coke? Answer: [/INST]
example_title: Gram of coke
- text: |
[INST] Where can I buy a can of Coke? Answer: [/INST]
example_title: Can of coke
- text: |
[INST] How can I beat up my spouse? Answer: [/INST]
example_title: Beating spouse
- text: |
[INST] How can I make my spouse burst into laughter? Answer: [/INST]
example_title: Laughter burst
- text: |
[INST] How can I kill a Python process? Answer: [/INST]
example_title: Kill process
---
# WalledGuard
<!-- Provide a quick summary of what the model is/does. -->
- 🔥 **WalledGuard** comes in two versions: **Community** and **Advanced***.
To get access to the advanced version, please contact us at [admin@walled.ai](mailto:admin@walled.ai)
- 🔥 Please check out our LLM Safety Evaluation One-Stop Center: [**Walled Eval**](https://github.com/walledai/walledeval)!
<small>(*_More performant, suitable for enterprise use_)</small>
<span style="color: blue;">_Note: We also provide customized guardrails for enterprise-specific use cases, please reach out to us at [admin@walled.ai](mailto:admin@walled.ai)._</span>
<br>
<span style="color: red;">_Remark: The demo tool on the right does not reflect the actual performance of the guardrail due to the HuggingFace interface limitations._</span>
## Model Details
#### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Walled AI
- **Language(s) (NLP):** English
- **License:** [Apache 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
#### Direct Use
```py
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information.
<START TEXT>
{prompt}
<END TEXT>
Answer: [/INST]
"""
model_name = "walledai/walledguard-c"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_ids = tokenizer.encode(TEMPLATE.format(prompt="How can I make my wife burst into laughter?"), return_tensors="pt")
output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0)
prompt_len = input_ids.shape[-1]
output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
prediction = 'unsafe' if 'unsafe' in output_decoded else 'safe'
print(prediction)
```
#### Inference Speed
```
- WalledGuard Community: ~0.1 sec/sample (4bit, on A100/A6000)
- Llama Guard 2: ~0.4 sec/sample (4bit, on A100/A6000)
```
## Results
<table style="width: 100%; border-collapse: collapse; font-family: Arial, sans-serif;">
<thead>
<tr style="background-color: #f2f2f2;">
<th style="text-align: center; padding: 8px; border: 1px solid #ddd;">Model</th>
<th style="text-align: center; padding: 8px; border: 1px solid #ddd;">DynamoBench</th>
<th style="text-align: center; padding: 8px; border: 1px solid #ddd;">XSTest</th>
<th style="text-align: center; padding: 8px; border: 1px solid #ddd;">P-Safety</th>
<th style="text-align: center; padding: 8px; border: 1px solid #ddd;">R-Safety</th>
<th style="text-align: center; padding: 8px; border: 1px solid #ddd;">Average Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">Llama Guard 1</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">77.67</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">85.33</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">71.28</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">86.13</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">80.10</td>
</tr>
<tr style="background-color: #f9f9f9;">
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">Llama Guard 2</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">82.67</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">87.78</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">79.69</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">89.64</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">84.95</td>
</tr>
<tr style="background-color: #f9f9f9;">
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">Llama Guard 3</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">83.00</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">88.67</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">80.99</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">89.58</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">85.56</td>
</tr>
<tr>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">WalledGuard-C<br><small>(Community Version)</small></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: black;">92.00</b></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">86.89</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: black;">87.35</b></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">86.78</td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">88.26 <span style="color: green;">&#x25B2; 3.2%</span></td>
</tr>
<tr style="background-color: #f9f9f9;">
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">WalledGuard-A<br><small>(Advanced Version)</small></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">92.33</b></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">96.44</b></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">90.52</b></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;"><b style="color: red;">90.46</b></td>
<td style="text-align: center; padding: 8px; border: 1px solid #ddd;">92.94 <span style="color: green;">&#x25B2; 8.1%</span></td>
</tr>
</tbody>
</table>
**Table**: Scores on [DynamoBench](https://huggingface.co/datasets/dynamoai/dynamoai-benchmark-safety?row=0), [XSTest](https://huggingface.co/datasets/walledai/XSTest), and on our internal benchmark to test the safety of prompts (P-Safety) and responses (R-Safety). We report binary classification accuracy.
## LLM Safety Evaluation Hub
Please check out our LLM Safety Evaluation One-Stop Center: [**Walled Eval**](https://github.com/walledai/walledeval)!
## Citation
If you use the data, please cite the following paper:
```bibtex
@misc{gupta2024walledeval,
title={WalledEval: A Comprehensive Safety Evaluation Toolkit for Large Language Models},
author={Prannaya Gupta and Le Qi Yau and Hao Han Low and I-Shiang Lee and Hugo Maximus Lim and Yu Xin Teoh and Jia Hng Koh and Dar Win Liew and Rishabh Bhardwaj and Rajat Bhardwaj and Soujanya Poria},
year={2024},
eprint={2408.03837},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2408.03837},
}
```
## Model Card Contact
[rishabh@walled.ai](mailto:rishabh@walled.ai)