metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-mobile-eye-tracking-dataset-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9230769230769231
vit-base-patch16-224-in21k-finetuned-mobile-eye-tracking-dataset-v2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2615
- Accuracy: 0.9231
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 2 | 0.6641 | 0.6154 |
No log | 2.0 | 4 | 0.6343 | 0.6154 |
No log | 3.0 | 6 | 0.5990 | 0.6154 |
No log | 4.0 | 8 | 0.5438 | 0.8462 |
No log | 5.0 | 10 | 0.5108 | 0.9231 |
No log | 6.0 | 12 | 0.4413 | 0.8462 |
No log | 7.0 | 14 | 0.3947 | 0.8462 |
No log | 8.0 | 16 | 0.3568 | 0.9231 |
No log | 9.0 | 18 | 0.3297 | 0.9231 |
0.4923 | 10.0 | 20 | 0.3110 | 0.9231 |
0.4923 | 11.0 | 22 | 0.2988 | 0.9231 |
0.4923 | 12.0 | 24 | 0.2836 | 0.9231 |
0.4923 | 13.0 | 26 | 0.2702 | 0.9231 |
0.4923 | 14.0 | 28 | 0.2636 | 0.9231 |
0.4923 | 15.0 | 30 | 0.2615 | 0.9231 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0