File size: 5,368 Bytes
5fe9736 dcbbaf5 80deca2 dcbbaf5 169b903 5fe9736 80deca2 5fe9736 bdbf2fe 5fe9736 ded564d 5fe9736 8768b23 5fe9736 a43c8d9 5fe9736 521ad3f 5fe9736 bdbf2fe 5fe9736 ded564d 5fe9736 8768b23 5fe9736 b176118 5fe9736 b04a51b 5fe9736 6182f4f d95b608 6182f4f 5fe9736 05014f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
---
language: ja
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Japanese by Chien Vu
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Japanese
type: common_voice
args: ja
metrics:
- name: Test WER
type: wer
value: 30.84
- name: Test CER
type: cer
value: 17.85
widget:
- label: Japanese speech corpus sample 1
src: https://soundcloud.com/chien-vu-731637315/basic5000-0001
- label: Japanese speech corpus sample 2
src: https://soundcloud.com/chien-vu-731637315/basic5000-0002
---
# Wav2Vec2-Large-XLSR-53-Japanese
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice) and Japanese speech corpus of Saruwatari-lab, University of Tokyo [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
!pip install mecab-python3
!pip install unidic-lite
!python -m unidic download
import torch
import torchaudio
import librosa
from datasets import load_dataset
import MeCab
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
# config
wakati = MeCab.Tagger("-Owakati")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\。\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\「\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\」\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\…\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\・]'
# load data, processor and model
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese")
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese")
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
# Preprocessing the datasets.
def speech_file_to_array_fn(batch):
batch["sentence"] = wakati.parse(batch["sentence"]).strip()
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Japanese test data of Common Voice.
```python
!pip install mecab-python3
!pip install unidic-lite
!python -m unidic download
import torch
import librosa
import torchaudio
from datasets import load_dataset, load_metric
import MeCab
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
#config
wakati = MeCab.Tagger("-Owakati")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\、\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\。\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\「\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\」\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\…\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\・]'
# load data, processor and model
test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese")
model = Wav2Vec2ForCTC.from_pretrained("vumichien/wav2vec2-large-xlsr-japanese")
model.to("cuda")
resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
# Preprocessing the datasets.
def speech_file_to_array_fn(batch):
batch["sentence"] = wakati.parse(batch["sentence"]).strip()
batch["sentence"] = re.sub(chars_to_ignore_regex,'', batch["sentence"]).strip()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# evaluate function
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
## Test Result
**WER:** 30.84%,
**CER:** 17.85%
## Training
The Common Voice `train`, `validation` datasets and Japanese speech corpus `basic5000` datasets were used for training.
|