File size: 18,859 Bytes
949837c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
from functools import wraps
import warnings
import torch
import openvino as ov
from pathlib import Path
from typing import Tuple, Optional
import types
from transformers.modeling_outputs import BaseModelOutputWithPast
try:
from optimum.exporters.openvino.stateful import make_stateful
from optimum.exporters.openvino.stateful import fuse_cache_reorder
except ImportError:
warnings.warn("We recommend to update optimum-intel for getting optimal performance")
make_stateful = None
fuse_cache_reorder = None
def register_configs():
from optimum.exporters.tasks import TasksManager
TasksManager._SUPPORTED_MODEL_TYPE["minicpm"] = TasksManager._SUPPORTED_MODEL_TYPE["llama"]
TasksManager._SUPPORTED_MODEL_TYPE["qwen2"] = TasksManager._SUPPORTED_MODEL_TYPE["llama"]
def patch_stateful(ov_model, model_type):
key_value_input_names = [
key.get_any_name() for key in ov_model.inputs if any("key_values" in key_name for key_name in key.get_names())
]
key_value_output_names = [
key.get_any_name() for key in ov_model.outputs if any("present" in key_name for key_name in key.get_names())
]
not_kv_inputs = [
input for input in ov_model.inputs if not any(name in key_value_input_names for name in input.get_names())
]
if not key_value_input_names or not key_value_output_names:
return
batch_dim = 1 if model_type == "chatglm" else 0
num_attention_heads = 1
fuse_cache_reorder(ov_model, not_kv_inputs, key_value_input_names, batch_dim)
make_stateful(
ov_model, not_kv_inputs, key_value_input_names, key_value_output_names, batch_dim, num_attention_heads, None
)
def flattenize_inputs(inputs):
"""
Helper function for making nested inputs flattens
"""
flatten_inputs = []
for input_data in inputs:
if input_data is None:
continue
if isinstance(input_data, (list, tuple)):
flatten_inputs.extend(flattenize_inputs(input_data))
else:
flatten_inputs.append(input_data)
return flatten_inputs
def cleanup_torchscript_cache():
"""
Helper for removing cached model representation
"""
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
torch.jit._state._clear_class_state()
def convert_mpt(pt_model: torch.nn.Module, model_path: Path):
"""
MPT model conversion function
Params:
pt_model: PyTorch model
model_path: path for saving model
Returns:
None
"""
ov_out_path = Path(model_path) / "openvino_model.xml"
pt_model.config.save_pretrained(ov_out_path.parent)
pt_model.config.use_cache = True
outs = pt_model(
input_ids=torch.ones((1, 10), dtype=torch.long),
attention_mask=torch.ones((1, 10), dtype=torch.long),
)
inputs = ["input_ids"]
outputs = ["logits"]
dynamic_shapes = {"input_ids": {0: "batch_size", 1: "seq_len"}, "attention_mask": {0: "batch_size", 1: "seq_len"}}
for idx in range(len(outs.past_key_values)):
inputs.extend([f"past_key_values.{idx}.key", f"past_key_values.{idx}.value"])
dynamic_shapes[inputs[-1]] = {0: "batch_size", 2: "past_sequence + sequence"}
dynamic_shapes[inputs[-2]] = {0: "batch_size", 3: "past_sequence + sequence"}
outputs.extend([f"present.{idx}.key", f"present.{idx}.value"])
inputs.append("attention_mask")
dummy_inputs = {
"input_ids": torch.ones((1, 2), dtype=torch.long),
"past_key_values": outs.past_key_values,
"attention_mask": torch.ones((1, 12), dtype=torch.long),
}
pt_model.config.torchscript = True
orig_forward = pt_model.forward
@wraps(orig_forward)
def ts_patched_forward(
input_ids: torch.Tensor,
past_key_values: Tuple[Tuple[torch.Tensor]],
attention_mask: torch.Tensor,
):
pkv_list = list(past_key_values)
outs = orig_forward(
input_ids=input_ids, past_key_values=pkv_list, attention_mask=attention_mask
)
return (outs.logits, tuple(outs.past_key_values))
pt_model.forward = ts_patched_forward
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
pt_model.forward = orig_forward
for inp_name, m_input, input_data in zip(
inputs, ov_model.inputs, flattenize_inputs(dummy_inputs.values())
):
input_node = m_input.get_node()
if input_node.element_type == ov.Type.dynamic:
m_input.get_node().set_element_type(ov.Type.f32)
shape = list(input_data.shape)
if inp_name in dynamic_shapes:
for k in dynamic_shapes[inp_name]:
shape[k] = -1
input_node.set_partial_shape(ov.PartialShape(shape))
m_input.get_tensor().set_names({inp_name})
for out, out_name in zip(ov_model.outputs, outputs):
out.get_tensor().set_names({out_name})
ov_model.validate_nodes_and_infer_types()
if make_stateful is not None:
patch_stateful(ov_model, "mpt")
ov.save_model(ov_model, ov_out_path)
del ov_model
cleanup_torchscript_cache()
del pt_model
def convert_baichuan(pt_model: torch.nn.Module, model_path: Path):
"""
Baichuan model conversion function
Params:
pt_model: PyTorch model
model_path: path for saving model
Returns:
None
"""
ov_out_path = Path(model_path) / "openvino_model.xml"
pt_model.config.save_pretrained(ov_out_path.parent)
pt_model.config.use_cache = True
outs = pt_model(
input_ids=torch.ones((1, 10), dtype=torch.long),
attention_mask=torch.ones((1, 10), dtype=torch.long),
)
inputs = ["input_ids", "attention_mask"]
outputs = ["logits"]
dynamic_shapes = {
"input_ids": {0: "batch_size", 1: "seq_len"},
"attention_mask": {0: "batch_size", 1: "seq_len"},
}
for idx in range(len(outs.past_key_values)):
inputs.extend([f"past_key_values.{idx}.key", f"past_key_values.{idx}.value"])
dynamic_shapes[inputs[-1]] = {0: "batch_size", 2: "past_sequence + sequence"}
dynamic_shapes[inputs[-2]] = {0: "batch_size", 2: "past_sequence + sequence"}
outputs.extend([f"present.{idx}.key", f"present.{idx}.value"])
dummy_inputs = {
"input_ids": torch.ones((1, 2), dtype=torch.long),
"attention_mask": torch.ones((1, 12), dtype=torch.long),
"past_key_values": outs.past_key_values,
}
pt_model.config.torchscript = True
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
for inp_name, m_input, input_data in zip(
inputs, ov_model.inputs, flattenize_inputs(dummy_inputs.values())
):
input_node = m_input.get_node()
if input_node.element_type == ov.Type.dynamic:
m_input.get_node().set_element_type(ov.Type.f32)
shape = list(input_data.shape)
if inp_name in dynamic_shapes:
for k in dynamic_shapes[inp_name]:
shape[k] = -1
input_node.set_partial_shape(ov.PartialShape(shape))
m_input.get_tensor().set_names({inp_name})
for out, out_name in zip(ov_model.outputs, outputs):
out.get_tensor().set_names({out_name})
ov_model.validate_nodes_and_infer_types()
if make_stateful is not None:
patch_stateful(ov_model, "baichuan")
ov.save_model(ov_model, ov_out_path)
del ov_model
cleanup_torchscript_cache()
del pt_model
@torch.jit.script_if_tracing
def _chatglm2_get_context_layer(query_layer: torch.Tensor, key_layer: torch.Tensor, value_layer: torch.Tensor):
mask = torch.zeros((query_layer.shape[-2], key_layer.shape[-2]), dtype=query_layer.dtype)
if query_layer.shape[2] == key_layer.shape[2]:
tmp_mask = torch.ones((query_layer.shape[-2], key_layer.shape[-2]), dtype=torch.bool).triu(diagonal=1)
mask.masked_fill_(tmp_mask, float("-inf"))
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attn_mask=mask)
return context_layer
def _core_attention_forward(self, query_layer, key_layer, value_layer, attention_mask):
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
if attention_mask is None:
context_layer = _chatglm2_get_context_layer(query_layer, key_layer, value_layer)
else:
context_layer = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer, attention_mask
)
context_layer = context_layer.permute(2, 0, 1, 3)
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(*new_context_layer_shape)
return context_layer
@torch.jit.script_if_tracing
def _get_chatglm_attention_mask(input_ids, past_key):
mask = torch.zeros((input_ids.shape[1], past_key.shape[0] + input_ids.shape[1]), dtype=past_key.dtype)
if past_key.shape[0] == 0:
tmp_mask = torch.ones((input_ids.shape[1], past_key.shape[0] + input_ids.shape[1]), dtype=torch.bool).triu(diagonal=1)
mask.masked_fill_(tmp_mask, float("-inf"))
return mask
def _chatglm_transformer_forward(
self,
input_ids,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if self.pre_seq_len is not None:
if past_key_values is None:
past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
dtype=inputs_embeds.dtype)
if attention_mask is not None:
attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
elif past_key_values is not None:
full_attention_mask = torch.ones(batch_size, seq_length, seq_length,
device=input_ids.device,
dtype=torch.float) * float("-inf")
full_attention_mask.triu_(diagonal=1)
past_length = 0
if past_key_values:
past_length = past_key_values[0][0].shape[0]
if past_length:
full_attention_mask = torch.cat((torch.zeros(batch_size, seq_length, past_length,
device=input_ids.device), full_attention_mask), dim=-1)
full_attention_mask.unsqueeze_(1)
# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def _patch_chatglm_forward(model: "PreTrainedModel"):
model.transformer.forward = types.MethodType(_chatglm_transformer_forward, model.transformer)
for block in model.transformer.encoder.layers:
block.self_attention.core_attention.forward = types.MethodType(
_core_attention_forward, block.self_attention.core_attention
)
def convert_chatglm(pt_model: torch.nn.Module, model_path: Path):
"""
ChatGLM model conversion function
Params:
pt_model: PyTorch model
model_path: path for saving model
Returns:
None
"""
_patch_chatglm_forward(pt_model)
ov_out_path = Path(model_path) / "openvino_model.xml"
pt_model.config.save_pretrained(ov_out_path.parent)
pt_model.config.use_cache = True
outs = pt_model(
input_ids=torch.ones((1, 10), dtype=torch.long),
position_ids=torch.arange(0, 10, dtype=torch.long),
)
inputs = ["input_ids"]
outputs = ["logits"]
dynamic_shapes = {
"input_ids": {0: "batch_size", 1: "seq_len"},
"position_ids": {0: "batch_size", 1: "seq_len"},
"attention_mask": {0: "batch_size", 1: "seq_len"},
}
inputs += ["position_ids", "attention_mask"]
for idx in range(len(outs.past_key_values)):
inputs.extend([f"past_key_values.{idx}.key", f"past_key_values.{idx}.value"])
dynamic_shapes[inputs[-1]] = {0: "past_sequence + sequence", 1: "batch_size"}
dynamic_shapes[inputs[-2]] = {0: "past_sequence + sequence", 1: "batch_size"}
outputs.extend([f"present.{idx}.key", f"present.{idx}.value"])
dummy_inputs = {
"input_ids": torch.ones((1, 1), dtype=torch.long),
"position_ids": torch.tensor([[10]], dtype=torch.long),
"attention_mask": torch.ones((1, 11), dtype=torch.long),
"past_key_values": outs.past_key_values,
}
pt_model.config.torchscript = True
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
for inp_name, m_input, input_data in zip(
inputs, ov_model.inputs, flattenize_inputs(dummy_inputs.values())
):
input_node = m_input.get_node()
if input_node.element_type == ov.Type.dynamic:
m_input.get_node().set_element_type(ov.Type.f32)
shape = list(input_data.shape)
if inp_name in dynamic_shapes:
for k in dynamic_shapes[inp_name]:
shape[k] = -1
input_node.set_partial_shape(ov.PartialShape(shape))
m_input.get_tensor().set_names({inp_name})
for out, out_name in zip(ov_model.outputs, outputs):
out.get_tensor().set_names({out_name})
ov_model.validate_nodes_and_infer_types()
if make_stateful is not None:
patch_stateful(ov_model, "chatglm")
ov.save_model(ov_model, ov_out_path)
del ov_model
cleanup_torchscript_cache()
del pt_model
def convert_gemma(pt_model: torch.nn.Module, model_path: Path):
"""
Gamma model conversion function
Params:
pt_model: PyTorch model
model_path: path for saving model
Returns:
None
"""
ov_out_path = Path(model_path) / "openvino_model.xml"
pt_model.config.save_pretrained(ov_out_path.parent)
pt_model.config.use_cache = True
outs = pt_model(input_ids=torch.ones((2, 10), dtype=torch.long))
inputs = ["input_ids"]
outputs = ["logits"]
dynamic_shapes = {
"input_ids": {0: "batch_size", 1: "seq_len"},
"attention_mask": {0: "batch_size", 1: "seq_len"},
"position_ids": {0: "batch_size", 1: "seq_len"},
}
inputs += ["attention_mask", "position_ids"]
for idx in range(len(outs.past_key_values)):
inputs.extend([f"past_key_values.{idx}.key", f"past_key_values.{idx}.value"])
dynamic_shapes[inputs[-1]] = {0: "batch_size", 2: "past_sequence + sequence"}
dynamic_shapes[inputs[-2]] = {0: "batch_size", 2: "past_sequence + sequence"}
outputs.extend([f"present.{idx}.key", f"present.{idx}.value"])
dummy_inputs = {
"input_ids": torch.ones((2, 2), dtype=torch.long),
"attention_mask": torch.ones((2, 12), dtype=torch.long),
"position_ids": torch.tensor([[10, 11], [10, 11]], dtype=torch.long),
"past_key_values": outs.past_key_values,
}
pt_model.config.torchscript = True
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
for inp_name, m_input, input_data in zip(
inputs, ov_model.inputs, flattenize_inputs(dummy_inputs.values())
):
input_node = m_input.get_node()
if input_node.element_type == ov.Type.dynamic:
m_input.get_node().set_element_type(ov.Type.f32)
shape = list(input_data.shape)
if inp_name in dynamic_shapes:
for k in dynamic_shapes[inp_name]:
shape[k] = -1
input_node.set_partial_shape(ov.PartialShape(shape))
m_input.get_tensor().set_names({inp_name})
for out, out_name in zip(ov_model.outputs, outputs):
out.get_tensor().set_names({out_name})
ov_model.validate_nodes_and_infer_types()
if make_stateful is not None:
patch_stateful(ov_model, "gemma")
ov.save_model(ov_model, ov_out_path)
del ov_model
cleanup_torchscript_cache()
del pt_model
def convert_mpnet(pt_model: torch.nn.Module, model_path: Path):
ov_out_path = Path(model_path) / "openvino_model.xml"
dummy_inputs = {"input_ids": torch.ones((1, 10), dtype=torch.long), "attention_mask": torch.ones(
(1, 10), dtype=torch.long)}
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
ov.save_model(ov_model, ov_out_path)
def convert_bert(pt_model: torch.nn.Module, model_path: Path):
ov_out_path = Path(model_path) / "openvino_model.xml"
dummy_inputs = {"input_ids": torch.ones((1, 10), dtype=torch.long), "attention_mask": torch.ones(
(1, 10), dtype=torch.long), "token_type_ids": torch.zeros((1, 10), dtype=torch.long)}
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
ov.save_model(ov_model, ov_out_path)
converters = {
# LLM models
"mpt": convert_mpt,
"chatglm3": convert_chatglm,
"baichuan2": convert_baichuan,
"gemma": convert_gemma,
# embedding models
"all-mpnet-base-v2": convert_mpnet,
"text2vec-large-chinese": convert_bert,
}
|