- A set of unstructured sparse bert-base-uncased models fine-tuned for SQuADv1.
- Tensorflow models are created using
TFAutoModelForQuestionAnswering.from_pretrained(..., from_pt=True)
andmodel.save_pretrained(tf_pth)
. - Observed issue - loss in model translation, discrepancy observed in evaluation between pytorch and tensorflow models.
- Table below is evaluated in HF's transformers v4.9.2. Sparsity is normalized to dense layers in attention heads and FFNN.
- Evaluation cli:
python run_qa.py \ --model_name_or_path <model identifier> \ --dataset_name squad \ --do_eval \ --per_device_eval_batch_size 384 \ --max_seq_length 68 \ --doc_stride 26 \ --output_dir /tmp/eval-squad
HF Model Hub Identifier | sparsity | em (pytorch) | em (tf) | f1 (pytorch) | f1 (tf) | |
---|---|---|---|---|---|---|
0 | vuiseng9/bert-base-uncased-squadv1-85.4-sparse | 85.4 | 69.9338 | 14.2573 | 77.6861 | 23.4917 |
1 | vuiseng9/bert-base-uncased-squadv1-72.9-sparse | 72.9 | 74.6358 | 31.0596 | 82.2555 | 39.8446 |
2 | vuiseng9/bert-base-uncased-squadv1-65.1-sparse | 65.1 | 76.1306 | 43.0274 | 83.4117 | 51.4300 |
3 | vuiseng9/bert-base-uncased-squadv1-59.6-sparse | 59.6 | 76.8590 | 50.4920 | 84.1267 | 59.0881 |
4 | vuiseng9/bert-base-uncased-squadv1-52.0-sparse | 52.0 | 78.0038 | 54.2857 | 85.2000 | 62.2914 |