File size: 22,216 Bytes
0fe5838 f620f32 0fe5838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
---
language:
- en
library_name: transformers
---
```python
import torch
import typing
import functorch
import itertools
```
# 2.3 Tensors
### We diagrams tensors, which can be vertically and horizontally decomposed.
<img src="SVG/rediagram.svg" width="700">
```python
# This diagram shows a function h : 3, 4 2, 6 -> 1 2 constructed out of f: 4 2, 6 -> 3 3 and g: 3, 3 3 -> 1 2
# We use assertions and random outputs to represent generic functions, and how diagrams relate to code.
T = torch.Tensor
def f(x0 : T, x1 : T):
""" f: 4 2, 6 -> 3 3 """
assert x0.size() == torch.Size([4,2])
assert x1.size() == torch.Size([6])
return torch.rand([3,3])
def g(x0 : T, x1: T):
""" g: 3, 3 3 -> 1 2 """
assert x0.size() == torch.Size([3])
assert x1.size() == torch.Size([3, 3])
return torch.rand([1,2])
def h(x0 : T, x1 : T, x2 : T):
""" h: 3, 4 2, 6 -> 1 2"""
assert x0.size() == torch.Size([3])
assert x1.size() == torch.Size([4, 2])
assert x2.size() == torch.Size([6])
return g(x0, f(x1,x2))
h(torch.rand([3]), torch.rand([4, 2]), torch.rand([6]))
```
tensor([[0.6837, 0.6853]])
## 2.3.1 Indexes
### Figure 8: Indexes
<img src="SVG/indexes.svg" width="700">
```python
# Extracting a subtensor is a process we are familiar with. Consider,
# A (4 3) tensor
table = torch.arange(0,12).view(4,3)
row = table[2,:]
row
```
tensor([6, 7, 8])
### Figure 9: Subtensors
<img src="SVG/subtensors.svg" width="700">
```python
# Different orders of access give the same result.
# Set up a random (5 7) tensor
a, b = 5, 7
Xab = torch.rand([a] + [b])
# Show that all pairs of indexes give the same result
for ia, jb in itertools.product(range(a), range(b)):
assert Xab[ia, jb] == Xab[ia, :][jb]
assert Xab[ia, jb] == Xab[:, jb][ia]
```
## 2.3.2 Broadcasting
### Figure 10: Broadcasting
<img src="SVG/broadcasting0.svg" width="700">
<img src="SVG/broadcasting0a.svg" width="700">
```python
a, b, c, d = [3], [2], [4], [3]
T = torch.Tensor
# We have some function from a to b;
def G(Xa: T) -> T:
""" G: a -> b """
return sum(Xa**2) + torch.ones(b)
# We could bootstrap a definition of broadcasting,
# Note that we are using spaces to indicate tensoring.
# We will use commas for tupling, which is in line with standard notation while writing code.
def Gc(Xac: T) -> T:
""" G c : a c -> b c """
Ybc = torch.zeros(b + c)
for j in range(c[0]):
Ybc[:,jc] = G(Xac[:,jc])
return Ybc
# Or use a PyTorch command,
# G *: a * -> b *
Gs = torch.vmap(G, -1, -1)
# We feed a random input, and see whether applying an index before or after
# gives the same result.
Xac = torch.rand(a + c)
for jc in range(c[0]):
assert torch.allclose(G(Xac[:,jc]), Gc(Xac)[:,jc])
assert torch.allclose(G(Xac[:,jc]), Gs(Xac)[:,jc])
# This shows how our definition of broadcasting lines up with that used by PyTorch vmap.
```
### Figure 11: Inner Broadcasting
<img src="SVG/inner_broadcasting0.svg" width="700">
<img src="SVG/inner broadcasting0a.svg" width="700">
```python
a, b, c, d = [3], [2], [4], [3]
T = torch.Tensor
# We have some function which can be inner broadcast,
def H(Xa: T, Xd: T) -> T:
""" H: a, d -> b """
return torch.sum(torch.sqrt(Xa**2)) + torch.sum(torch.sqrt(Xd ** 2)) + torch.ones(b)
# We can bootstrap inner broadcasting,
def Hc0(Xca: T, Xd : T) -> T:
""" c0 H: c a, d -> c d """
# Recall that we defined a, b, c, d in [_] arrays.
Ycb = torch.zeros(c + b)
for ic in range(c[0]):
Ycb[ic, :] = H(Xca[ic, :], Xd)
return Ycb
# But vmap offers a clear way of doing it,
# *0 H: * a, d -> * c
Hs0 = torch.vmap(H, (0, None), 0)
# We can show this satisfies Definition 2.14 by,
Xca = torch.rand(c + a)
Xd = torch.rand(d)
for ic in range(c[0]):
assert torch.allclose(Hc0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))
assert torch.allclose(Hs0(Xca, Xd)[ic, :], H(Xca[ic, :], Xd))
```
### Figure 12 Elementwise operations
<img src="SVG/elementwise0.svg" width="700">
```python
# Elementwise operations are implemented as usual ie
def f(x):
"f : 1 -> 1"
return x ** 2
# We broadcast an elementwise operation,
# f *: * -> *
fs = torch.vmap(f)
Xa = torch.rand(a)
for i in range(a[0]):
# And see that it aligns with the index before = index after framework.
assert torch.allclose(f(Xa[i]), fs(Xa)[i])
# But, elementwise operations are implied, so no special implementation is needed.
assert torch.allclose(f(Xa[i]), f(Xa)[i])
```
# 2.4 Linearity
## 2.4.2 Implementing Linearity and Common Operations
### Figure 17: Multi-head Attention and Einsum
<img src="SVG/implementation.svg" width="700">
```python
import math
import einops
x, y, k, h = 5, 3, 4, 2
Q = torch.rand([y, k, h])
K = torch.rand([x, k, h])
# Local memory contains,
# Q: y k h # K: x k h
# Outer products, transposes, inner products, and
# diagonalization reduce to einops expressions.
# Transpose K,
K = einops.einsum(K, 'x k h -> k x h')
# Outer product and diagonalize,
X = einops.einsum(Q, K, 'y k1 h, k2 x h -> y k1 k2 x h')
# Inner product,
X = einops.einsum(X, 'y k k x h -> y x h')
# Scale,
X = X / math.sqrt(k)
Q = torch.rand([y, k, h])
K = torch.rand([x, k, h])
# Local memory contains,
# Q: y k h # K: x k h
X = einops.einsum(Q, K, 'y k h, x k h -> y x h')
X = X / math.sqrt(k)
```
## 2.4.3 Linear Algebra
### Figure 18: Graphical Linear Algebra
<img src="SVG/linear_algebra.svg" width="700">
```python
# We will do an exercise implementing some of these equivalences.
# The reader can follow this exercise to get a better sense of how linear functions can be implemented,
# and how different forms are equivalent.
a, b, c, d = [3], [4], [5], [3]
# We will be using this function *a lot*
es = einops.einsum
# F: a b c
F_matrix = torch.rand(a + b + c)
# As an exericse we will show that the linear map F: a -> b c can be transposed in two ways.
# Either, we can broadcast, or take an outer product. We will show these are the same.
# Transposing by broadcasting
#
def F_func(Xa: T):
""" F: a -> b c """
return es(Xa,F_matrix,'a,a b c->b c',)
# * F: * a -> * b c
F_broadcast = torch.vmap(F_func, 0, 0)
# We then reduce it, as in the diagram,
# b a -> b b c -> c
def F_broadcast_transpose(Xba: T):
""" (b F) (.b c): b a -> c """
Xbbc = F_broadcast(Xba)
return es(Xbbc, 'b b c -> c')
# Transpoing by linearity
#
# We take the outer product of Id(b) and F, and follow up with a inner product.
# This gives us,
F_outerproduct = es(torch.eye(b[0]), F_matrix,'b0 b1, a b2 c->b0 b1 a b2 c',)
# Think of this as Id(b) F: b0 a -> b1 b2 c arranged into an associated b0 b1 a b2 c tensor.
# We then take the inner product. This gives a (b a c) matrix, which can be used for a (b a -> c) map.
F_linear_transpose = es(F_outerproduct,'b B a B c->b a c',)
# We contend that these are the same.
#
Xba = torch.rand(b + a)
assert torch.allclose(
F_broadcast_transpose(Xba),
es(Xba,F_linear_transpose, 'b a, b a c -> c'))
# Furthermore, lets prove the unit-inner product identity.
#
# The first step is an outer product with the unit,
outerUnit = lambda Xb: es(Xb, torch.eye(b[0]), 'b0, b1 b2 -> b0 b1 b2')
# The next is a inner product over the first two axes,
dotOuter = lambda Xbbb: es(Xbbb, 'b0 b0 b1 -> b1')
# Applying both of these *should* be the identity, and hence leave any input unchanged.
Xb = torch.rand(b)
assert torch.allclose(
Xb,
dotOuter(outerUnit(Xb)))
# Therefore, we can confidently use the expressions in Figure 18 to manipulate expressions.
```
# 3.1 Basic Multi-Layer Perceptron
### Figure 19: Implementing a Basic Multi-Layer Perceptron
<img src="SVG/imagerec.svg" width="700">
```python
import torch.nn as nn
# Basic Image Recogniser
# This is a close copy of an introductory PyTorch tutorial:
# https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.html
class BasicImageRecogniser(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
def forward(self, x):
x = self.flatten(x)
x = self.linear_relu_stack(x)
y_pred = nn.Softmax(x)
return y_pred
my_BasicImageRecogniser = BasicImageRecogniser()
my_BasicImageRecogniser.forward(torch.rand([1,28,28]))
```
Softmax(
dim=tensor([[ 0.0150, -0.0301, 0.1395, -0.0558, 0.0024, -0.0613, -0.0163, 0.0134,
0.0577, -0.0624]], grad_fn=<AddmmBackward0>)
)
# 3.2 Neural Circuit Diagrams for the Transformer Architecture
### Figure 20: Scaled Dot-Product Attention
<img src="SVG/scaled_attention.svg" width="700">
```python
# Note, that we need to accomodate batches, hence the ... to capture additional axes.
# We can do the algorithm step by step,
def ScaledDotProductAttention(q: T, k: T, v: T) -> T:
''' yk, xk, xk -> yk '''
klength = k.size()[-1]
# Transpose
k = einops.einsum(k, '... x k -> ... k x')
# Matrix Multiply / Inner Product
x = einops.einsum(q, k, '... y k, ... k x -> ... y x')
# Scale
x = x / math.sqrt(klength)
# SoftMax
x = torch.nn.Softmax(-1)(x)
# Matrix Multiply / Inner Product
x = einops.einsum(x, v, '... y x, ... x k -> ... y k')
return x
# Alternatively, we can simultaneously broadcast linear functions.
def ScaledDotProductAttention(q: T, k: T, v: T) -> T:
''' yk, xk, xk -> yk '''
klength = k.size()[-1]
# Inner Product and Scale
x = einops.einsum(q, k, '... y k, ... x k -> ... y x')
# Scale and SoftMax
x = torch.nn.Softmax(-1)(x / math.sqrt(klength))
# Final Inner Product
x = einops.einsum(x, v, '... y x, ... x k -> ... y k')
return x
```
### Figure 21: Multi-Head Attention
<img src="SVG/multihead0.svg" width="700">
We will be implementing this algorithm. This shows us how we go from diagrams to implementations, and begins to give an idea of how organized diagrams leads to organized code.
```python
def MultiHeadDotProductAttention(q: T, k: T, v: T) -> T:
''' ykh, xkh, xkh -> ykh '''
klength = k.size()[-2]
x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')
x = torch.nn.Softmax(-2)(x / math.sqrt(klength))
x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')
return x
# We implement this component as a neural network model.
# This is necessary when there are bold, learned components that need to be initialized.
class MultiHeadAttention(nn.Module):
# Multi-Head attention has various settings, which become variables
# for the initializer.
def __init__(self, m, k, h):
super().__init__()
self.m, self.k, self.h = m, k, h
# Set up all the boldface, learned components
# Note how they bind axes we want to split, which we do later with einops.
self.Lq = nn.Linear(m, k*h, False)
self.Lk = nn.Linear(m, k*h, False)
self.Lv = nn.Linear(m, k*h, False)
self.Lo = nn.Linear(k*h, m, False)
# We have endogenous data (Eym) and external / injected data (Xxm)
def forward(self, Eym, Xxm):
""" y m, x m -> y m """
# We first generate query, key, and value vectors.
# Linear layers are automatically broadcast.
# However, the k and h axes are bound. We define an unbinder to handle the outputs,
unbind = lambda x: einops.rearrange(x, '... (k h)->... k h', h=self.h)
q = unbind(self.Lq(Eym))
k = unbind(self.Lk(Xxm))
v = unbind(self.Lv(Xxm))
# We feed q, k, and v to standard Multi-Head inner product Attention
o = MultiHeadDotProductAttention(q, k, v)
# Rebind to feed to the final learned layer,
o = einops.rearrange(o, '... k h-> ... (k h)', h=self.h)
return self.Lo(o)
# Now we can run it on fake data;
y, x, m, jc, heads = [20], [22], [128], [16], 4
# Internal Data
Eym = torch.rand(y + m)
# External Data
Xxm = torch.rand(x + m)
mha = MultiHeadAttention(m[0],jc[0],heads)
assert list(mha.forward(Eym, Xxm).size()) == y + m
```
# 3.4 Computer Vision
Here, we really start to understand why splitting diagrams into ``fenced off'' blocks aids implementation.
In addition to making diagrams easier to understand and patterns more clearn, blocks indicate how code can structured and organized.
## Figure 26: Identity Residual Network
<img src="SVG/IdResNet_overall.svg" width="700">
```python
# For Figure 26, every fenced off region is its own module.
# Batch norm and then activate is a repeated motif,
class NormActivate(nn.Sequential):
def __init__(self, nf, Norm=nn.BatchNorm2d, Activation=nn.ReLU):
super().__init__(Norm(nf), Activation())
def size_to_string(size):
return " ".join(map(str,list(size)))
# The Identity ResNet block breaks down into a manageable sequence of components.
class IdentityResNet(nn.Sequential):
def __init__(self, N=3, n_mu=[16,64,128,256], y=10):
super().__init__(
nn.Conv2d(3, n_mu[0], 3, padding=1),
Block(1, N, n_mu[0], n_mu[1]),
Block(2, N, n_mu[1], n_mu[2]),
Block(2, N, n_mu[2], n_mu[3]),
NormActivate(n_mu[3]),
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
nn.Linear(n_mu[3], y),
nn.Softmax(-1),
)
```
The Block can be defined in a seperate model, keeping the code manageable and closely connected to the diagram.
<img src="SVG/IdResNet_block.svg" width="700">
```python
# We then follow how diagrams define each ``block''
class Block(nn.Sequential):
def __init__(self, s, N, n0, n1):
""" n0 and n1 as inputs to the initializer are implicit from having them in the domain and codomain in the diagram. """
nb = n1 // 4
super().__init__(
*[
NormActivate(n0),
ResidualConnection(
nn.Sequential(
nn.Conv2d(n0, nb, 1, s),
NormActivate(nb),
nn.Conv2d(nb, nb, 3, padding=1),
NormActivate(nb),
nn.Conv2d(nb, n1, 1),
),
nn.Conv2d(n0, n1, 1, s),
)
] + [
ResidualConnection(
nn.Sequential(
NormActivate(n1),
nn.Conv2d(n1, nb, 1),
NormActivate(nb),
nn.Conv2d(nb, nb, 3, padding=1),
NormActivate(nb),
nn.Conv2d(nb, n1, 1)
),
)
] * N
)
# Residual connections are a repeated pattern in the diagram. So, we are motivated to encapsulate them
# as a seperate module.
class ResidualConnection(nn.Module):
def __init__(self, mainline : nn.Module, connection : nn.Module | None = None) -> None:
super().__init__()
self.main = mainline
self.secondary = nn.Identity() if connection == None else connection
def forward(self, x):
return self.main(x) + self.secondary(x)
```
```python
# A standard image processing algorithm has inputs shaped b c h w.
b, c, hw = [3], [3], [16, 16]
idresnet = IdentityResNet()
Xbchw = torch.rand(b + c + hw)
# And we see if the overall size is maintained,
assert list(idresnet.forward(Xbchw).size()) == b + [10]
```
The UNet is a more complicated algorithm than residual networks. The ``fenced off'' sections help keep our code organized. Diagrams streamline implementation, and helps keep code organized.
## Figure 27: The UNet architecture
<img src="SVG/unet.svg" width="700">
```python
# We notice that double convolution where the numbers of channels change is a repeated motif.
# We denote the input with c0 and output with c1.
# This can also be done for subsequent members of an iteration.
# When we go down an iteration eg. 5, 4, etc. we may have the input be c1 and the output c0.
class DoubleConvolution(nn.Sequential):
def __init__(self, c0, c1, Activation=nn.ReLU):
super().__init__(
nn.Conv2d(c0, c1, 3, padding=1),
Activation(),
nn.Conv2d(c0, c1, 3, padding=1),
Activation(),
)
# The model is specified for a very specific number of layers,
# so we will not make it very flexible.
class UNet(nn.Module):
def __init__(self, y=2):
super().__init__()
# Set up the channel sizes;
c = [1 if i == 0 else 64 * 2 ** i for i in range(6)]
# Saving and loading from memory means we can not use a single,
# sequential chain.
# Set up and initialize the components;
self.DownScaleBlocks = [
DownScaleBlock(c[i],c[i+1])
for i in range(0,4)
] # Note how this imitates the lambda operators in the diagram.
self.middleDoubleConvolution = DoubleConvolution(c[4], c[5])
self.middleUpscale = nn.ConvTranspose2d(c[5], c[4], 2, 2, 1)
self.upScaleBlocks = [
UpScaleBlock(c[5-i],c[4-i])
for i in range(1,4)
]
self.finalConvolution = nn.Conv2d(c[1], y)
def forward(self, x):
cLambdas = []
for dsb in self.DownScaleBlocks:
x, cLambda = dsb(x)
cLambdas.append(cLambda)
x = self.middleDoubleConvolution(x)
x = self.middleUpscale(x)
for usb in self.upScaleBlocks:
cLambda = cLambdas.pop()
x = usb(x, cLambda)
x = self.finalConvolution(x)
class DownScaleBlock(nn.Module):
def __init__(self, c0, c1) -> None:
super().__init__()
self.doubleConvolution = DoubleConvolution(c0, c1)
self.downScaler = nn.MaxPool2d(2, 2, 1)
def forward(self, x):
cLambda = self.doubleConvolution(x)
x = self.downScaler(cLambda)
return x, cLambda
class UpScaleBlock(nn.Module):
def __init__(self, c1, c0) -> None:
super().__init__()
self.doubleConvolution = DoubleConvolution(2*c1, c1)
self.upScaler = nn.ConvTranspose2d(c1,c0,2,2,1)
def forward(self, x, cLambda):
# Concatenation occurs over the C channel axis (dim=1)
x = torch.concat(x, cLambda, 1)
x = self.doubleConvolution(x)
x = self.upScaler(x)
return x
```
# 3.5 Vision Transformer
We adapt our code for Multi-Head Attention to apply it to the vision case. This is a good exercise in how neural circuit diagrams allow code to be easily adapted for new modalities.
## Figure 28: Visual Attention
<img src="SVG/visual_attention.svg" width="700">
```python
class VisualAttention(nn.Module):
def __init__(self, c, k, heads = 1, kernel = 1, stride = 1):
super().__init__()
# w gives the kernel size, which we make adjustable.
self.c, self.k, self.h, self.w = c, k, heads, kernel
# Set up all the boldface, learned components
# Note how standard components may not have axes bound in
# the same way as diagrams. This requires us to rearrange
# using the einops package.
# The learned layers form convolutions
self.Cq = nn.Conv2d(c, k * heads, kernel, stride)
self.Ck = nn.Conv2d(c, k * heads, kernel, stride)
self.Cv = nn.Conv2d(c, k * heads, kernel, stride)
self.Co = nn.ConvTranspose2d(
k * heads, c, kernel, stride)
# Defined previously, closely follows the diagram.
def MultiHeadDotProductAttention(self, q: T, k: T, v: T) -> T:
''' ykh, xkh, xkh -> ykh '''
klength = k.size()[-2]
x = einops.einsum(q, k, '... y k h, ... x k h -> ... y x h')
x = torch.nn.Softmax(-2)(x / math.sqrt(klength))
x = einops.einsum(x, v, '... y x h, ... x k h -> ... y k h')
return x
# We have endogenous data (EYc) and external / injected data (XXc)
def forward(self, EcY, XcX):
""" cY, cX -> cY
The visual attention algorithm. Injects information from Xc into Yc. """
# query, key, and value vectors.
# We unbind the k h axes which were produced by the convolutions, and feed them
# in the normal manner to MultiHeadDotProductAttention.
unbind = lambda x: einops.rearrange(x, 'N (k h) H W -> N (H W) k h', h=self.h)
# Save size to recover it later
q = self.Cq(EcY)
W = q.size()[-1]
# By appropriately managing the axes, minimal changes to our previous code
# is necessary.
q = unbind(q)
k = unbind(self.Ck(XcX))
v = unbind(self.Cv(XcX))
o = self.MultiHeadDotProductAttention(q, k, v)
# Rebind to feed to the transposed convolution layer.
o = einops.rearrange(o, 'N (H W) k h -> N (k h) H W',
h=self.h, W=W)
return self.Co(o)
# Single batch element,
b = [1]
Y, X, c, k = [16, 16], [16, 16], [33], 8
# The additional configurations,
heads, kernel, stride = 4, 3, 3
# Internal Data,
EYc = torch.rand(b + c + Y)
# External Data,
XXc = torch.rand(b + c + X)
# We can now run the algorithm,
visualAttention = VisualAttention(c[0], k, heads, kernel, stride)
# Interestingly, the height/width reduces by 1 for stride
# values above 1. Otherwise, it stays the same.
visualAttention.forward(EYc, XXc).size()
```
torch.Size([1, 33, 15, 15])
# Appendix
```python
# A container to track the size of modules,
# Replace a module definition eg.
# > self.Cq = nn.Conv2d(c, k * heads, kernel, stride)
# With;
# > self.Cq = Tracker(nn.Conv2d(c, k * heads, kernel, stride), "Query convolution")
# And the input / output sizes (to check diagrams) will be printed.
class Tracker(nn.Module):
def __init__(self, module: nn.Module, name : str = ""):
super().__init__()
self.module = module
if name:
self.name = name
else:
self.name = self.module._get_name()
def forward(self, x):
x_size = size_to_string(x.size())
x = self.module.forward(x)
y_size = size_to_string(x.size())
print(f"{self.name}: \t {x_size} -> {y_size}")
return x
``` |