File size: 1,786 Bytes
ff914a0 10af7a3 ff914a0 d26b7c8 10af7a3 ff914a0 10af7a3 ff914a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: msc_imasc_openslr_festfox_Whisper_Medium
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# msc_imasc_openslr_festfox_Whisper_Medium
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0318
- Wer: 14.7300
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0599 | 0.4 | 1000 | 0.0910 | 42.4981 |
| 0.0341 | 0.79 | 2000 | 0.0584 | 30.0572 |
| 0.0183 | 1.19 | 3000 | 0.0439 | 23.1650 |
| 0.0147 | 1.58 | 4000 | 0.0363 | 18.7360 |
| 0.0107 | 1.98 | 5000 | 0.0322 | 16.4220 |
| 0.0032 | 2.37 | 6000 | 0.0318 | 14.7300 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
|