File size: 1,786 Bytes
ff914a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10af7a3
 
ff914a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26b7c8
10af7a3
ff914a0
 
 
 
 
 
10af7a3
 
 
 
 
 
ff914a0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: msc_imasc_openslr_festfox_Whisper_Medium
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# msc_imasc_openslr_festfox_Whisper_Medium

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0318
- Wer: 14.7300

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 6000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0599        | 0.4   | 1000 | 0.0910          | 42.4981 |
| 0.0341        | 0.79  | 2000 | 0.0584          | 30.0572 |
| 0.0183        | 1.19  | 3000 | 0.0439          | 23.1650 |
| 0.0147        | 1.58  | 4000 | 0.0363          | 18.7360 |
| 0.0107        | 1.98  | 5000 | 0.0322          | 16.4220 |
| 0.0032        | 2.37  | 6000 | 0.0318          | 14.7300 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1