File size: 5,351 Bytes
84e523f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: es
datasets:
- lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India."
  example_title: "Question Generation Example 1" 
- text: "a <hl> noviembre <hl> , que es también la estación lluviosa."
  example_title: "Question Generation Example 2" 
- text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013."
  example_title: "Question Generation Example 3" 
model-index:
- name: vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_esquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 9.41
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 23.51
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 21.88
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 84.07
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 58.84
---

# Model Card of `vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg`
This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-es-5000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-5000) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [vocabtrimmer/mt5-small-trimmed-es-5000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-5000)   
- **Language:** es  
- **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   84.07 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_1     |   25.67 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_2     |   17.4  | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_3     |   12.59 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_4     |    9.41 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| METEOR     |   21.88 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| MoverScore |   58.84 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| ROUGE_L    |   23.51 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_esquad
 - dataset_name: default
 - input_types: paragraph_answer
 - output_types: question
 - prefix_types: None
 - model: vocabtrimmer/mt5-small-trimmed-es-5000
 - max_length: 512
 - max_length_output: 32
 - epoch: 12
 - batch: 16
 - lr: 0.001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 4
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-es-5000-esquad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```