File size: 5,347 Bytes
e2d9663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: es
datasets:
- lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India."
example_title: "Question Generation Example 1"
- text: "a <hl> noviembre <hl> , que es también la estación lluviosa."
example_title: "Question Generation Example 2"
- text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013."
example_title: "Question Generation Example 3"
model-index:
- name: vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_esquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 9.47
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 24.48
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 22.78
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 84.04
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 59.29
---
# Model Card of `vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg`
This model is fine-tuned version of [ckpts/'mbart-large-cc25'-trimmed-es](https://huggingface.co/ckpts/'mbart-large-cc25'-trimmed-es) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [ckpts/'mbart-large-cc25'-trimmed-es](https://huggingface.co/ckpts/'mbart-large-cc25'-trimmed-es)
- **Language:** es
- **Training data:** [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="es", model="vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg")
# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 84.04 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_1 | 25.81 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_2 | 17.51 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_3 | 12.67 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| Bleu_4 | 9.47 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| METEOR | 22.78 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| MoverScore | 59.29 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
| ROUGE_L | 24.48 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_esquad
- dataset_name: default
- input_types: paragraph_answer
- output_types: question
- prefix_types: None
- model: ckpts/'mbart-large-cc25'-trimmed-es
- max_length: 512
- max_length_output: 32
- epoch: 7
- batch: 8
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 8
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mbart-large-cc25-trimmed-es-esquad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|