File size: 9,752 Bytes
eaa7462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import sys
import json
from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer, LoggingHandler, util, models, evaluation, losses, InputExample
import logging
from datetime import datetime
import gzip
import os
import tarfile
import tqdm
from torch.utils.data import Dataset
import random
from shutil import copyfile
import pickle
import argparse
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
parser = argparse.ArgumentParser()
parser.add_argument("--train_batch_size", default=64, type=int)
parser.add_argument("--max_seq_length", default=250, type=int)
parser.add_argument("--model_name", default="nicoladecao/msmarco-word2vec256000-distilbert-base-uncased")
parser.add_argument("--max_passages", default=0, type=int)
parser.add_argument("--epochs", default=30, type=int)
parser.add_argument("--pooling", default="mean")
parser.add_argument("--negs_to_use", default=None, help="From which systems should negatives be used? Multiple systems seperated by comma. None = all")
parser.add_argument("--warmup_steps", default=1000, type=int)
parser.add_argument("--lr", default=2e-5, type=float)
parser.add_argument("--num_negs_per_system", default=5, type=int)
parser.add_argument("--use_all_queries", default=False, action="store_true")
args = parser.parse_args()
logging.info(str(args))
# The model we want to fine-tune
train_batch_size = args.train_batch_size #Increasing the train batch size improves the model performance, but requires more GPU memory
model_name = args.model_name
max_passages = args.max_passages
max_seq_length = args.max_seq_length #Max length for passages. Increasing it, requires more GPU memory
num_negs_per_system = args.num_negs_per_system # We used different systems to mine hard negatives. Number of hard negatives to add from each system
num_epochs = args.epochs # Number of epochs we want to train
# Load our embedding model
logging.info("Create new SBERT model")
word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), args.pooling)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
#Freeze embedding layer
word_embedding_model.auto_model.embeddings.requires_grad = False
model_save_path = f'output/train_bi-encoder-margin_mse-word2vec-{model_name.replace("/", "-")}-batch_size_{train_batch_size}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
# Write self to path
os.makedirs(model_save_path, exist_ok=True)
train_script_path = os.path.join(model_save_path, 'train_script.py')
copyfile(__file__, train_script_path)
with open(train_script_path, 'a') as fOut:
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
### Now we read the MS Marco dataset
data_folder = 'msmarco-data'
#### Read the corpus files, that contain all the passages. Store them in the corpus dict
corpus = {} #dict in the format: passage_id -> passage. Stores all existent passages
collection_filepath = os.path.join(data_folder, 'collection.tsv')
if not os.path.exists(collection_filepath):
tar_filepath = os.path.join(data_folder, 'collection.tar.gz')
if not os.path.exists(tar_filepath):
logging.info("Download collection.tar.gz")
util.http_get('https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz', tar_filepath)
with tarfile.open(tar_filepath, "r:gz") as tar:
tar.extractall(path=data_folder)
logging.info("Read corpus: collection.tsv")
with open(collection_filepath, 'r', encoding='utf8') as fIn:
for line in fIn:
pid, passage = line.strip().split("\t")
pid = int(pid)
corpus[pid] = passage
### Read the train queries, store in queries dict
queries = {} #dict in the format: query_id -> query. Stores all training queries
queries_filepath = os.path.join(data_folder, 'queries.train.tsv')
if not os.path.exists(queries_filepath):
tar_filepath = os.path.join(data_folder, 'queries.tar.gz')
if not os.path.exists(tar_filepath):
logging.info("Download queries.tar.gz")
util.http_get('https://msmarco.blob.core.windows.net/msmarcoranking/queries.tar.gz', tar_filepath)
with tarfile.open(tar_filepath, "r:gz") as tar:
tar.extractall(path=data_folder)
with open(queries_filepath, 'r', encoding='utf8') as fIn:
for line in fIn:
qid, query = line.strip().split("\t")
qid = int(qid)
queries[qid] = query
# Load a dict (qid, pid) -> ce_score that maps query-ids (qid) and paragraph-ids (pid)
# to the CrossEncoder score computed by the cross-encoder/ms-marco-MiniLM-L-6-v2 model
ce_scores_file = os.path.join(data_folder, 'cross-encoder-ms-marco-MiniLM-L-6-v2-scores.pkl.gz')
if not os.path.exists(ce_scores_file):
logging.info("Download cross-encoder scores file")
util.http_get('https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives/resolve/main/cross-encoder-ms-marco-MiniLM-L-6-v2-scores.pkl.gz', ce_scores_file)
logging.info("Load CrossEncoder scores dict")
with gzip.open(ce_scores_file, 'rb') as fIn:
ce_scores = pickle.load(fIn)
# As training data we use hard-negatives that have been mined using various systems
hard_negatives_filepath = os.path.join(data_folder, 'msmarco-hard-negatives.jsonl.gz')
if not os.path.exists(hard_negatives_filepath):
logging.info("Download cross-encoder scores file")
util.http_get('https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives/resolve/main/msmarco-hard-negatives.jsonl.gz', hard_negatives_filepath)
logging.info("Read hard negatives train file")
train_queries = {}
negs_to_use = None
with gzip.open(hard_negatives_filepath, 'rt') as fIn:
for line in tqdm.tqdm(fIn):
if max_passages > 0 and len(train_queries) >= max_passages:
break
data = json.loads(line)
#Get the positive passage ids
pos_pids = data['pos']
#Get the hard negatives
neg_pids = set()
if negs_to_use is None:
if args.negs_to_use is not None: #Use specific system for negatives
negs_to_use = args.negs_to_use.split(",")
else: #Use all systems
negs_to_use = list(data['neg'].keys())
logging.info("Using negatives from the following systems: {}".format(", ".join(negs_to_use)))
for system_name in negs_to_use:
if system_name not in data['neg']:
continue
system_negs = data['neg'][system_name]
negs_added = 0
for pid in system_negs:
if pid not in neg_pids:
neg_pids.add(pid)
negs_added += 1
if negs_added >= num_negs_per_system:
break
if args.use_all_queries or (len(pos_pids) > 0 and len(neg_pids) > 0):
train_queries[data['qid']] = {'qid': data['qid'], 'query': queries[data['qid']], 'pos': pos_pids, 'neg': neg_pids}
logging.info("Train queries: {}".format(len(train_queries)))
# We create a custom MSMARCO dataset that returns triplets (query, positive, negative)
# on-the-fly based on the information from the mined-hard-negatives jsonl file.
class MSMARCODataset(Dataset):
def __init__(self, queries, corpus, ce_scores):
self.queries = queries
self.queries_ids = list(queries.keys())
self.corpus = corpus
self.ce_scores = ce_scores
for qid in self.queries:
self.queries[qid]['pos'] = list(self.queries[qid]['pos'])
self.queries[qid]['neg'] = list(self.queries[qid]['neg'])
random.shuffle(self.queries[qid]['neg'])
def __getitem__(self, item):
query = self.queries[self.queries_ids[item]]
query_text = query['query']
qid = query['qid']
if len(query['pos']) > 0:
pos_id = query['pos'].pop(0) #Pop positive and add at end
pos_text = self.corpus[pos_id]
query['pos'].append(pos_id)
else: #We only have negatives, use two negs
pos_id = query['neg'].pop(0) #Pop negative and add at end
pos_text = self.corpus[pos_id]
query['neg'].append(pos_id)
#Get a negative passage
neg_id = query['neg'].pop(0) #Pop negative and add at end
neg_text = self.corpus[neg_id]
query['neg'].append(neg_id)
pos_score = self.ce_scores[qid][pos_id]
neg_score = self.ce_scores[qid][neg_id]
return InputExample(texts=[query_text, pos_text, neg_text], label=pos_score-neg_score)
def __len__(self):
return len(self.queries)
# For training the SentenceTransformer model, we need a dataset, a dataloader, and a loss used for training.
train_dataset = MSMARCODataset(queries=train_queries, corpus=corpus, ce_scores=ce_scores)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size, drop_last=True)
train_loss = losses.MarginMSELoss(model=model)
# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
epochs=num_epochs,
warmup_steps=args.warmup_steps,
use_amp=True,
checkpoint_path=model_save_path,
checkpoint_save_steps=10000,
optimizer_params = {'lr': args.lr},
)
# Train latest model
model.save(model_save_path)
# Script was called via:
#python train_bi-encoder_margin-mse_word2vec.py |