|
--- |
|
language: |
|
- tr |
|
arXiv: 2403.01308 |
|
library_name: transformers |
|
pipeline_tag: text2text-generation |
|
license: cc-by-nc-sa-4.0 |
|
inference: false |
|
datasets: |
|
- vngrs-ai/vngrs-web-corpus |
|
--- |
|
# VBART Model Card |
|
|
|
## Model Description |
|
|
|
VBART is the first sequence-to-sequence LLM pre-trained on Turkish corpora from scratch on a large scale. It was pre-trained by VNGRS in February 2023. |
|
The model is capable of conditional text generation tasks such as text summarization, paraphrasing, and title generation when fine-tuned. |
|
It outperforms its multilingual counterparts, albeit being much smaller than other implementations. |
|
|
|
This repository contains pre-trained TensorFlow and Safetensors weights of VBART-Small-Base. |
|
|
|
- **Developed by:** [VNGRS-AI](https://vngrs.com/ai/) |
|
- **Model type:** Transformer encoder-decoder based on mBART architecture |
|
- **Language(s) (NLP):** Turkish |
|
- **License:** CC BY-NC-SA 4.0 |
|
- **Paper:** [arXiv](https://arxiv.org/abs/2403.01308) |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
The base model is pre-trained on [vngrs-web-corpus](https://huggingface.co/datasets/vngrs-ai/vngrs-web-corpus). It is curated by cleaning and filtering Turkish parts of [OSCAR-2201](https://huggingface.co/datasets/oscar-corpus/OSCAR-2201) and [mC4](https://huggingface.co/datasets/mc4) datasets. These datasets consist of documents of unstructured web crawl data. More information about the dataset can be found on their respective pages. Data is filtered using a set of heuristics and certain rules, explained in the appendix of our [paper](https://arxiv.org/abs/2403.01308). |
|
|
|
### Limitations |
|
This model is the pre-trained base model and is capable of masked language modeling. |
|
Its purpose is to serve as the base model to be fine-tuned for downstream tasks. |
|
|
|
### Training Procedure |
|
Pre-trained for a total of 52B tokens. |
|
#### Hardware |
|
- **GPUs**: 8 x Nvidia A100-80 GB |
|
#### Software |
|
- TensorFlow |
|
#### Hyperparameters |
|
##### Pretraining |
|
- **Training regime:** fp16 mixed precision |
|
- **Training objective**: Span masking (using mask lengths sampled from Poisson distribution λ=3.5, masking 30% of tokens) |
|
- **Optimizer** : Adam optimizer (β1 = 0.9, β2 = 0.98, Ɛ = 1e-6) |
|
- **Scheduler**: Custom scheduler from the original Transformers paper (20,000 warm-up steps) |
|
- **Dropout**: 0.1 |
|
- **Initial Learning rate**: 5e-6 |
|
- **Training tokens**: 52B |
|
|
|
|
|
## Citation |
|
``` |
|
@article{turker2024vbart, |
|
title={VBART: The Turkish LLM}, |
|
author={Turker, Meliksah and Ari, Erdi and Han, Aydin}, |
|
journal={arXiv preprint arXiv:2403.01308}, |
|
year={2024} |
|
} |
|
``` |