File size: 1,975 Bytes
f151f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-samsum-acsi-ami
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-samsum-acsi-ami
This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1361
- Rouge1: 39.7563
- Rouge2: 11.1286
- Rougel: 23.2632
- Rougelsum: 36.5664
- Gen Len: 108.15
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 20 | 3.2095 | 39.8174 | 11.5559 | 24.0296 | 36.3048 | 108.5 |
| No log | 2.0 | 40 | 3.1361 | 39.7563 | 11.1286 | 23.2632 | 36.5664 | 108.15 |
| No log | 3.0 | 60 | 3.1599 | 41.79 | 12.0967 | 23.5336 | 37.6859 | 122.95 |
| No log | 4.0 | 80 | 3.2878 | 42.3161 | 12.2801 | 23.9352 | 38.2391 | 122.7 |
| No log | 5.0 | 100 | 3.3671 | 40.7968 | 10.7336 | 22.9434 | 36.4383 | 129.225 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|