metadata
license: bigscience-bloom-rail-1.0
language:
- vi
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- bloom
- causal-lm
- pytorch
Hoa 7B (Bloom architecture)
Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.
Details will be available soon.
To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu)
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-7b")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-7b", low_cpu_mem_usage=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)
gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)
print(tokenizer.batch_decode(gen_tokens)[0])