File size: 14,387 Bytes
5b3e9f3
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f21044b0710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21044b07a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f21044b0830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f21044b08c0>", "_build": "<function ActorCriticPolicy._build at 0x7f21044b0950>", "forward": "<function ActorCriticPolicy.forward at 0x7f21044b09e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21044b0a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f21044b0b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21044b0b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f21044b0c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f21044b0cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21044fca50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663662200.8491578, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBHGz5SfK06YMHxuNkoSrY2roY8IOMqtwAAgD8AAIA/ZoEKvY9WaLo9uOE5Tk1/tkfgnTkze/+4AACAPwAAgD/a8Ys+IYxkP60+sjxLr4W+GPFNPm42Jb4AAAAAAAAAAE33Mr2Pnne6riPlunq1vbUnAf04HN0BOgAAgD8AAIA/egA3vvrDMT+IbGo+WSubvpDZib1mjyg+AAAAAAAAAADNJl29uCbvuZQZhTvaoPy1S0FVuzhf97QAAIA/AACAP4DUlD3DoQa6FWULO0TD8TVKe1m4ZhogugAAgD8AAIA/4OU1vul8GbyajYy6Ewt5uLltmj23q685AACAPwAAgD+zQNm9KRh9uphkobtz2i22AguROfYTtzoAAIA/AACAP0BG1T3iRYw/eLVgvJHMq76RleE8qeDBvQAAAAAAAAAAjTm0PVL5sTyZwR+7ls+dvaftYzx2Ypi8AAAAAAAAAADmJLY9w7VtuquVpLvf/gY5keqkuwCSLjoAAIA/AACAP6C4Vz4uh5e8OoauO6KxAjtKhw6+zgbPOwAAAAAAAIA/gN8LvjhF/Lv2Fhy+PIevvH/UWD3ni5A9AACAPwAAAACzjm29TDQZPkHEzL1Mgx++9ZLSO9EDK74AAAAAAAAAABplrz3DuW+6ssvwukQaozOvp0W7w4cKOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2ZQrvMt1U0CUhpRSlIwBbJRN6AOMAXSUR0CD48gbp/wzdX2UKGgGaAloD0MI3Vz8bU/oOECUhpRSlGgVTegDaBZHQIPoYQUYbbV1fZQoaAZoCWgPQwgoZVJDG7NcQJSGlFKUaBVN6ANoFkdAg/cLjghr33V9lChoBmgJaA9DCPG6fsFuxmFAlIaUUpRoFU3oA2gWR0CECF5le4TcdX2UKGgGaAloD0MI5s3hWu0/V0CUhpRSlGgVTegDaBZHQIQSVPnB+F11fZQoaAZoCWgPQwi46jpUU85hQJSGlFKUaBVN6ANoFkdAhBJZ4wAU+XV9lChoBmgJaA9DCFUyAFRx5l1AlIaUUpRoFU3oA2gWR0CEGulu3trsdX2UKGgGaAloD0MI7l2DvnQBYUCUhpRSlGgVTegDaBZHQIQb9l05lvt1fZQoaAZoCWgPQwilaybfbDFYQJSGlFKUaBVN6ANoFkdAhCSTyJ9Ao3V9lChoBmgJaA9DCO8a9KW3QzBAlIaUUpRoFUu+aBZHQIRZb3/Pw/h1fZQoaAZoCWgPQwgdq5Se6VU4QJSGlFKUaBVL0WgWR0CEXRoRIz3zdX2UKGgGaAloD0MIidNJtrr8YkCUhpRSlGgVTegDaBZHQIRzqVY6nzh1fZQoaAZoCWgPQwhbmIV2TiNlQJSGlFKUaBVN6ANoFkdAhHV0LMLWqnV9lChoBmgJaA9DCPci2o6pW11AlIaUUpRoFU3oA2gWR0CEezLJSzgNdX2UKGgGaAloD0MI96+sNCn7XECUhpRSlGgVTegDaBZHQIR8LVc2R7t1fZQoaAZoCWgPQwgTSIld2/ZbQJSGlFKUaBVN6ANoFkdAhH8a7NB4U3V9lChoBmgJaA9DCP1oOGXu8GRAlIaUUpRoFU3oA2gWR0CEhltj0+TvdX2UKGgGaAloD0MIKq2/JYCaY0CUhpRSlGgVTegDaBZHQISH5c1O0sx1fZQoaAZoCWgPQwimm8QgsP5hQJSGlFKUaBVN6ANoFkdAhIgwmeDnNnV9lChoBmgJaA9DCHU8ZqCy+WBAlIaUUpRoFU3oA2gWR0CEi9mPo3aSdX2UKGgGaAloD0MINgTHZdw8Q0CUhpRSlGgVS75oFkdAhI1icwxnF3V9lChoBmgJaA9DCHpW0opvKJy/lIaUUpRoFUvxaBZHQISN9zySV4Z1fZQoaAZoCWgPQwjDYz+LpXA5QJSGlFKUaBVLiWgWR0CEk1O45Lh8dX2UKGgGaAloD0MIEeM1r+o7ZECUhpRSlGgVTegDaBZHQISWxqbjLjh1fZQoaAZoCWgPQwjlZOJWQcJhQJSGlFKUaBVN6ANoFkdAhKRKGUOd5XV9lChoBmgJaA9DCAmp29lXDV5AlIaUUpRoFU3oA2gWR0CErH4u9OARdX2UKGgGaAloD0MIVd6OcFpZX0CUhpRSlGgVTegDaBZHQISsgn0Cih51fZQoaAZoCWgPQwjv5NNjW/xjQJSGlFKUaBVN6ANoFkdAhL1+xnnMdXV9lChoBmgJaA9DCJaxoZv9/lVAlIaUUpRoFU3oA2gWR0CEzKh0yP+5dX2UKGgGaAloD0MI8pTVdL18aECUhpRSlGgVTegDaBZHQIT1x7iQ1aZ1fZQoaAZoCWgPQwjy0He3svBjQJSGlFKUaBVN6ANoFkdAhQsPRqoIfXV9lChoBmgJaA9DCL7Ye/FF1lpAlIaUUpRoFU3oA2gWR0CFFBvDP4VRdX2UKGgGaAloD0MItmgB2laBZUCUhpRSlGgVTegDaBZHQIUY3eenQ6Z1fZQoaAZoCWgPQwj7IwwDlqxhQJSGlFKUaBVN6ANoFkdAhSbkwvg3tXV9lChoBmgJaA9DCKispuuJ0mVAlIaUUpRoFU3oA2gWR0CFKjQtz0YkdX2UKGgGaAloD0MIBFd5AmHzZ0CUhpRSlGgVTegDaBZHQIUxugFotcx1fZQoaAZoCWgPQwhCe/Xx0N9kQJSGlFKUaBVN6ANoFkdAhTTivX9R8HV9lChoBmgJaA9DCBO54Ax+zGBAlIaUUpRoFU3oA2gWR0CFNgLAHmihdX2UKGgGaAloD0MIezL/6Js3Z0CUhpRSlGgVTegDaBZHQIU+B/PPcBV1fZQoaAZoCWgPQwjfp6rQQJNeQJSGlFKUaBVN6ANoFkdAhUIdmYjSonV9lChoBmgJaA9DCOVGkbWGQ19AlIaUUpRoFU3oA2gWR0CFUBYr8R+SdX2UKGgGaAloD0MI58b0hKVBYECUhpRSlGgVTegDaBZHQIVYekSElE91fZQoaAZoCWgPQwiuRnal5cxhQJSGlFKUaBVN6ANoFkdAhVh94/u9e3V9lChoBmgJaA9DCGXequtQl0VAlIaUUpRoFU0KAWgWR0CFX8BWgezVdX2UKGgGaAloD0MIM/lmmxsNYECUhpRSlGgVTegDaBZHQIVo4Ajps411fZQoaAZoCWgPQwg8g4b+CXJeQJSGlFKUaBVN6ANoFkdAhXfG6GxlhHV9lChoBmgJaA9DCJsdqb7zCxdAlIaUUpRoFU0PAWgWR0CFekdV/+bWdX2UKGgGaAloD0MIN1MhHglnYECUhpRSlGgVTegDaBZHQIV7dCNS6191fZQoaAZoCWgPQwhI/Io13JdlQJSGlFKUaBVN6ANoFkdAhbV3jlxOtXV9lChoBmgJaA9DCFJHx9VIRWBAlIaUUpRoFU3oA2gWR0CFvloSteUqdX2UKGgGaAloD0MIXrwft1/kYECUhpRSlGgVTegDaBZHQIXCFhuwX691fZQoaAZoCWgPQwjLhcq/FhhhQJSGlFKUaBVN6ANoFkdAhcuHARChOHV9lChoBmgJaA9DCGmLa3ym82JAlIaUUpRoFU3oA2gWR0CFzefCAMDwdX2UKGgGaAloD0MINxsrMU/JYUCUhpRSlGgVTegDaBZHQIXTa8lHBk91fZQoaAZoCWgPQwjC+6pcqNBjQJSGlFKUaBVN6ANoFkdAhdW4b0e2eHV9lChoBmgJaA9DCO0OKQZIOGFAlIaUUpRoFU3oA2gWR0CF1o7NB4UvdX2UKGgGaAloD0MICW05l+JVZkCUhpRSlGgVTegDaBZHQIXdnvF3pwF1fZQoaAZoCWgPQwhxjjo6rmhHQJSGlFKUaBVL/GgWR0CF4KcwQDmsdX2UKGgGaAloD0MIxr/PuHAaQ0CUhpRSlGgVS9hoFkdAhevmr0aqCHV9lChoBmgJaA9DCF+1MuGXu2JAlIaUUpRoFU3oA2gWR0CF8WNb1RLsdX2UKGgGaAloD0MIsrlqniOlXECUhpRSlGgVTegDaBZHQIX6UnJDE3t1fZQoaAZoCWgPQwikx+9t+gMbQJSGlFKUaBVNGAFoFkdAhf8EH2RJVnV9lChoBmgJaA9DCBfYYyKlXGNAlIaUUpRoFU3oA2gWR0CGAgnVoYeldX2UKGgGaAloD0MIPdaMDPJZYUCUhpRSlGgVTegDaBZHQIYK6EvkBCF1fZQoaAZoCWgPQwjKxRhYx0dXQJSGlFKUaBVN6ANoFkdAhhjDQRf4RHV9lChoBmgJaA9DCAQdrWrJi2JAlIaUUpRoFU3oA2gWR0CGGvLi++M7dX2UKGgGaAloD0MIFNBE2PAmY0CUhpRSlGgVTegDaBZHQIYb8jC53C91fZQoaAZoCWgPQwhOe0rOiZpiQJSGlFKUaBVN6ANoFkdAhlSxvNu+AXV9lChoBmgJaA9DCHL8UGlE+2RAlIaUUpRoFU3oA2gWR0CGXN2nKnvVdX2UKGgGaAloD0MIn+QOm0ggZECUhpRSlGgVTegDaBZHQIZpSvs7dSF1fZQoaAZoCWgPQwghkEscedxUQJSGlFKUaBVN6ANoFkdAhmuQkX1rZnV9lChoBmgJaA9DCPvlkxVDRGVAlIaUUpRoFU3oA2gWR0CGcxTm4iHJdX2UKGgGaAloD0MIr9AHy9gAZ0CUhpRSlGgVTegDaBZHQIZz5EF4cFR1fZQoaAZoCWgPQwgv/UtSmWBBQJSGlFKUaBVLr2gWR0CGfmnjyWiUdX2UKGgGaAloD0MIg23Ek921WkCUhpRSlGgVTegDaBZHQIZ+4KjSG8F1fZQoaAZoCWgPQwi1pKMczB1jQJSGlFKUaBVN6ANoFkdAhosxIatLc3V9lChoBmgJaA9DCKXY0TjU+mBAlIaUUpRoFU3oA2gWR0CGkTBbfP5YdX2UKGgGaAloD0MIWYXNABfnZECUhpRSlGgVTegDaBZHQIaa3Sro4dZ1fZQoaAZoCWgPQwgXLNUFPDxlQJSGlFKUaBVN6ANoFkdAhqA3k5p8GHV9lChoBmgJaA9DCEgzFk1nMmZAlIaUUpRoFU3oA2gWR0CGo3tkWhysdX2UKGgGaAloD0MIqU4Hsp5XX0CUhpRSlGgVTegDaBZHQIatkF0PpY91fZQoaAZoCWgPQwgfSUkPQ+plQJSGlFKUaBVN6ANoFkdAhr5pmmLtNXV9lChoBmgJaA9DCLQFhNZD3GNAlIaUUpRoFU3oA2gWR0CGwP2MbWEsdX2UKGgGaAloD0MIAfkSKjjwXkCUhpRSlGgVTegDaBZHQIbCKySmqHZ1fZQoaAZoCWgPQwi54Az+/mZhQJSGlFKUaBVN6ANoFkdAhv3yyMUAUHV9lChoBmgJaA9DCIKN69/13lZAlIaUUpRoFU3oA2gWR0CHBtf8dgfEdX2UKGgGaAloD0MIfA4sR0ggZUCUhpRSlGgVTegDaBZHQIcWW/tY0VJ1fZQoaAZoCWgPQwhblNkgE+xjQJSGlFKUaBVN6ANoFkdAhx5qJVKf4HV9lChoBmgJaA9DCESJljwe/WBAlIaUUpRoFU3oA2gWR0CHH1e0ojOcdX2UKGgGaAloD0MIwxA5fT1NY0CUhpRSlGgVTegDaBZHQIcqWYBvJil1fZQoaAZoCWgPQwihMCjT6PphQJSGlFKUaBVN6ANoFkdAhyrTr/sE7nV9lChoBmgJaA9DCH+/mC1Zk2FAlIaUUpRoFU3oA2gWR0CHNvRdhRZVdX2UKGgGaAloD0MIaCRCI1gVY0CUhpRSlGgVTegDaBZHQIc8q66J66d1fZQoaAZoCWgPQwhdqWdBKHxdQJSGlFKUaBVN6ANoFkdAh0XHiNsFdXV9lChoBmgJaA9DCBXJVwKpvWRAlIaUUpRoFU3oA2gWR0CHSt/ViF0xdX2UKGgGaAloD0MIzXhb6TWOYUCUhpRSlGgVTegDaBZHQIdN482aUiZ1fZQoaAZoCWgPQwg1t0JYjfdEQJSGlFKUaBVN6ANoFkdAh1dcFyJbdXV9lChoBmgJaA9DCD4D6s2oqVxAlIaUUpRoFU3oA2gWR0CHZp3qRlpXdX2UKGgGaAloD0MIw9SWOkjSY0CUhpRSlGgVTegDaBZHQIdpEPpY9xJ1fZQoaAZoCWgPQwi7C5QU2BdiQJSGlFKUaBVN6ANoFkdAh2oxMN+b3HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}