File size: 4,619 Bytes
9adad46 d5dc7a8 9adad46 d5dc7a8 9adad46 d5dc7a8 9adad46 d5dc7a8 9adad46 d5dc7a8 9adad46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: mit
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: m2m100_418M-ja
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
config: en-ja
split: train
args: en-ja
metrics:
- name: Bleu
type: bleu
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# m2m100_418M-ja
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Bleu: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|:-------------:|:-----:|:-------:|:---------------:|:----:|
| 0.0 | 1.0 | 59084 | nan | 0.0 |
| 0.0 | 2.0 | 118168 | nan | 0.0 |
| 0.0 | 3.0 | 177252 | nan | 0.0 |
| 0.0 | 4.0 | 236336 | nan | 0.0 |
| 0.0 | 5.0 | 295420 | nan | 0.0 |
| 0.0 | 6.0 | 354504 | nan | 0.0 |
| 0.0 | 7.0 | 413588 | nan | 0.0 |
| 0.0 | 8.0 | 472672 | nan | 0.0 |
| 0.0 | 9.0 | 531756 | nan | 0.0 |
| 0.0 | 10.0 | 590840 | nan | 0.0 |
| 0.0 | 11.0 | 649924 | nan | 0.0 |
| 0.0 | 12.0 | 709008 | nan | 0.0 |
| 0.0 | 13.0 | 768092 | nan | 0.0 |
| 0.0 | 14.0 | 827176 | nan | 0.0 |
| 0.0 | 15.0 | 886260 | nan | 0.0 |
| 0.0 | 16.0 | 945344 | nan | 0.0 |
| 0.0 | 17.0 | 1004428 | nan | 0.0 |
| 0.0 | 18.0 | 1063512 | nan | 0.0 |
| 0.0 | 19.0 | 1122596 | nan | 0.0 |
| 0.0 | 20.0 | 1181680 | nan | 0.0 |
| 0.0 | 21.0 | 1240764 | nan | 0.0 |
| 0.0 | 22.0 | 1299848 | nan | 0.0 |
| 0.0 | 23.0 | 1358932 | nan | 0.0 |
| 0.0 | 24.0 | 1418016 | nan | 0.0 |
| 0.0 | 25.0 | 1477100 | nan | 0.0 |
| 0.0 | 26.0 | 1536184 | nan | 0.0 |
| 0.0 | 27.0 | 1595268 | nan | 0.0 |
| 0.0 | 28.0 | 1654352 | nan | 0.0 |
| 0.0 | 29.0 | 1713436 | nan | 0.0 |
| 0.0 | 30.0 | 1772520 | nan | 0.0 |
| 0.0 | 31.0 | 1831604 | nan | 0.0 |
| 0.0 | 32.0 | 1890688 | nan | 0.0 |
| 0.0 | 33.0 | 1949772 | nan | 0.0 |
| 0.0 | 34.0 | 2008856 | nan | 0.0 |
| 0.0 | 35.0 | 2067940 | nan | 0.0 |
| 0.0 | 36.0 | 2127024 | nan | 0.0 |
| 0.0 | 37.0 | 2186108 | nan | 0.0 |
| 0.0 | 38.0 | 2245192 | nan | 0.0 |
| 0.0 | 39.0 | 2304276 | nan | 0.0 |
| 0.0 | 40.0 | 2363360 | nan | 0.0 |
| 0.0 | 41.0 | 2422444 | nan | 0.0 |
| 0.0 | 42.0 | 2481528 | nan | 0.0 |
| 0.0 | 43.0 | 2540612 | nan | 0.0 |
| 0.0 | 44.0 | 2599696 | nan | 0.0 |
| 0.0 | 45.0 | 2658780 | nan | 0.0 |
| 0.0 | 46.0 | 2717864 | nan | 0.0 |
| 0.0 | 47.0 | 2776948 | nan | 0.0 |
| 0.0 | 48.0 | 2836032 | nan | 0.0 |
| 0.0 | 49.0 | 2895116 | nan | 0.0 |
| 0.0 | 50.0 | 2954200 | nan | 0.0 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.2
|