wav2vec2-xls-r-300m-khmer / README_prev.md
vitouphy's picture
retrain with train-val-test split
6bd1306
|
raw
history blame
2.96 kB
metadata
language:
  - km
license: apache-2.0
tags:
  - automatic-speech-recognition
  - openslr
  - robust-speech-event
  - km
  - generated_from_trainer
model-index:
  - name: xls-r-300m-km
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR km
          type: openslr
          args: km
        metrics:
          - name: Test WER
            type: wer
            value: 29.26
          - name: Test CER
            type: cer
            value: 7.93

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the openslr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3142
  • Wer: 0.3512

Evaluation results on OpenSLR "evaluation" (self-split) (Running ./eval.py):

  • WER: 0.2925882809468374
  • CER: 0.0792776460744666

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.2049 4.93 400 4.5570 1.0
3.569 9.87 800 3.5415 1.0
3.483 14.81 1200 3.3956 1.0
2.1906 19.75 1600 1.1732 0.7897
1.7968 24.69 2000 0.7634 0.6678
1.615 29.62 2400 0.6182 0.5922
1.52 34.56 2800 0.5473 0.5479
1.4696 39.5 3200 0.5002 0.5130
1.4175 44.44 3600 0.4752 0.5021
1.3943 49.38 4000 0.4638 0.4944
Pause and Resume
1.3829 4.93 400 0.4290 0.4796
1.3156 9.87 800 0.3856 0.4474
1.2396 14.81 1200 0.3600 0.4307
1.1444 19.75 1600 0.3423 0.4179
1.0979 24.69 2000 0.3370 0.3884
1.0714 29.62 2400 0.3237 0.3710
1.0442 34.56 2800 0.3336 0.3683
1.0492 39.5 3200 0.3166 0.3527
1.0284 44.44 3600 0.3178 0.3566
1.0302 49.38 4000 0.3142 0.3512

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0