|
--- |
|
language: |
|
- km |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- openslr |
|
- robust-speech-event |
|
- km |
|
- generated_from_trainer |
|
model-index: |
|
- name: xls-r-300m-km |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: OpenSLR km |
|
type: openslr |
|
args: km |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 29.26 |
|
- name: Test CER |
|
type: cer |
|
value: 7.93 |
|
--- |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the openslr dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3142 |
|
- Wer: 0.3512 |
|
|
|
# Evaluation results on OpenSLR "evaluation" (self-split) (Running ./eval.py): |
|
- WER: 0.2925882809468374 |
|
- CER: 0.0792776460744666 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 5.2049 | 4.93 | 400 | 4.5570 | 1.0 | |
|
| 3.569 | 9.87 | 800 | 3.5415 | 1.0 | |
|
| 3.483 | 14.81 | 1200 | 3.3956 | 1.0 | |
|
| 2.1906 | 19.75 | 1600 | 1.1732 | 0.7897 | |
|
| 1.7968 | 24.69 | 2000 | 0.7634 | 0.6678 | |
|
| 1.615 | 29.62 | 2400 | 0.6182 | 0.5922 | |
|
| 1.52 | 34.56 | 2800 | 0.5473 | 0.5479 | |
|
| 1.4696 | 39.5 | 3200 | 0.5002 | 0.5130 | |
|
| 1.4175 | 44.44 | 3600 | 0.4752 | 0.5021 | |
|
| 1.3943 | 49.38 | 4000 | 0.4638 | 0.4944 | |
|
| Pause and Resume | | | | | |
|
| 1.3829 | 4.93 | 400 | 0.4290 | 0.4796 | |
|
| 1.3156 | 9.87 | 800 | 0.3856 | 0.4474 | |
|
| 1.2396 | 14.81 | 1200 | 0.3600 | 0.4307 | |
|
| 1.1444 | 19.75 | 1600 | 0.3423 | 0.4179 | |
|
| 1.0979 | 24.69 | 2000 | 0.3370 | 0.3884 | |
|
| 1.0714 | 29.62 | 2400 | 0.3237 | 0.3710 | |
|
| 1.0442 | 34.56 | 2800 | 0.3336 | 0.3683 | |
|
| 1.0492 | 39.5 | 3200 | 0.3166 | 0.3527 | |
|
| 1.0284 | 44.44 | 3600 | 0.3178 | 0.3566 | |
|
| 1.0302 | 49.38 | 4000 | 0.3142 | 0.3512 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|