File size: 3,389 Bytes
2c5d6e2 5123eb2 5715dc7 2c5d6e2 796d933 149fe46 796d933 8d878c7 796d933 8d878c7 796d933 149fe46 796d933 149fe46 8d878c7 149fe46 2c5d6e2 796d933 2c5d6e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
- generated_from_trainer
- hf-asr-leaderboard
- librispeech_asr
- robust-speech-event
datasets:
- librispeech_asr
model-index:
- name: XLS-R-300M - English
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 12.29
- name: Test CER
type: cer
value: 3.34
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: en
metrics:
- name: Validation WER
type: wer
value: 36.75
- name: Validation CER
type: cer
value: 14.83
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
config: en
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: 37.81
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: en
metrics:
- name: Test WER
type: wer
value: 38.8
---
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1444
- Wer: 0.1167
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9365 | 4.17 | 500 | 2.9398 | 0.9999 |
| 1.5444 | 8.33 | 1000 | 0.5947 | 0.4289 |
| 1.1367 | 12.5 | 1500 | 0.2751 | 0.2366 |
| 0.9972 | 16.66 | 2000 | 0.2032 | 0.1797 |
| 0.9118 | 20.83 | 2500 | 0.1786 | 0.1479 |
| 0.8664 | 24.99 | 3000 | 0.1641 | 0.1408 |
| 0.8251 | 29.17 | 3500 | 0.1537 | 0.1267 |
| 0.793 | 33.33 | 4000 | 0.1525 | 0.1244 |
| 0.785 | 37.5 | 4500 | 0.1470 | 0.1184 |
| 0.7612 | 41.66 | 5000 | 0.1446 | 0.1177 |
| 0.7478 | 45.83 | 5500 | 0.1449 | 0.1176 |
| 0.7443 | 49.99 | 6000 | 0.1444 | 0.1167 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|