File size: 3,389 Bytes
2c5d6e2
 
 
 
 
 
 
 
5123eb2
 
 
5715dc7
 
2c5d6e2
796d933
 
149fe46
 
796d933
 
8d878c7
796d933
8d878c7
 
 
 
796d933
149fe46
 
 
 
 
 
 
796d933
 
 
 
 
 
 
149fe46
 
 
 
 
 
 
 
 
 
 
 
8d878c7
 
 
 
149fe46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5d6e2
 
 
 
 
 
 
 
 
796d933
2c5d6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
language:
- en
license: apache-2.0
tags:
- automatic-speech-recognition
- en
- generated_from_trainer
- hf-asr-leaderboard
- librispeech_asr
- robust-speech-event
datasets:
- librispeech_asr
model-index:
- name: XLS-R-300M - English
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: clean
      split: test
      args: 
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 12.29
    - name: Test CER
      type: cer
      value: 3.34
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: en
    metrics:
    - name: Validation WER
      type: wer
      value: 36.75
    - name: Validation CER
      type: cer
      value: 14.83
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8.0
      type: mozilla-foundation/common_voice_8_0
      config: en
      split: test
      args: 
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 37.81
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: en
    metrics:
    - name: Test WER
      type: wer
      value: 38.8
---

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1444
- Wer: 0.1167


## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.9365        | 4.17  | 500  | 2.9398          | 0.9999 |
| 1.5444        | 8.33  | 1000 | 0.5947          | 0.4289 |
| 1.1367        | 12.5  | 1500 | 0.2751          | 0.2366 |
| 0.9972        | 16.66 | 2000 | 0.2032          | 0.1797 |
| 0.9118        | 20.83 | 2500 | 0.1786          | 0.1479 |
| 0.8664        | 24.99 | 3000 | 0.1641          | 0.1408 |
| 0.8251        | 29.17 | 3500 | 0.1537          | 0.1267 |
| 0.793         | 33.33 | 4000 | 0.1525          | 0.1244 |
| 0.785         | 37.5  | 4500 | 0.1470          | 0.1184 |
| 0.7612        | 41.66 | 5000 | 0.1446          | 0.1177 |
| 0.7478        | 45.83 | 5500 | 0.1449          | 0.1176 |
| 0.7443        | 49.99 | 6000 | 0.1444          | 0.1167 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0