File size: 4,068 Bytes
8bbbe53 3996cef 8bbbe53 3996cef 723aeed 3996cef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
tags:
- clip
library_name: open_clip
pipeline_tag: zero-shot-image-classification
license: cc-by-nc-4.0
datasets:
- visheratin/laion-coco-nllb
---
## Model Summary
NLLB-SigLIP-MRL is a model that combines a text encoder from the [NLLB model](https://huggingface.co/facebook/nllb-200-distilled-1.3B) and an image encoder from the
[SigLIP](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) model. This allows us to extend the model capabilities
to 201 languages of the Flores-200. This version of the model was trained using a variation of [Matryoshka Representation learning](https://arxiv.org/abs/2205.13147)
to enable the generation of embeddings of sizes [32, 64, 128, 256, 512] in addition to the original 1152. Based on the benchmarks below, embeddings of sizes 256 and 512
preserve 90%+ of the full embedding quality.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/609ede05121df5de54007033/WmVc3Nl3MnMJiHWxlfctU.png)
The full embedding model sets new state-of-the-art for multilingual image and text retrieval on both XTD10 and Crossmodal-3600.
| Dataset | image retrieval R@1, avg | text retrieval R@1, avg | image retrieval R@5, avg | text retrieval R@5, avg | image retrieval R@10, avg | text retrieval R@10, avg |
|-----------------|:------------------------:|:------------------:|:-------------------:|:------------------:|:--------------------:|:-------------------:|
| Crossmodal-3600 | 0.6079 | 0.5741 | 0.8333 | 0.8174 | 0.8922 | 0.8816 |
| XTD10 | 0.6997 | 0.6433 | 0.8988 | 0.8848 | 0.9503 | 0.9449 |
## How to use
### Variable resolutions
<a target="_blank" href="https://colab.research.google.com/drive/1gYKUm3urhhHapaFbJ6GD1Fl3pI5g-fjM">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
If you want to use the model that supports variable embedding sizes, you can do it as follows:
```
!pip install -U transformers open_clip_torch
```
```
from transformers import AutoModel
from PIL import Image
import requests
import torch
model = AutoModel.from_pretrained("visheratin/nllb-siglip-mrl-large", device="cpu", trust_remote_code=True)
image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg"
image = Image.open(requests.get(image_path, stream=True).raw)
class_options = ["бабочка", "butterfly", "kat"]
class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"]
image_logits, text_logits = model.get_logits(
images=[image],
texts=class_options,
langs=class_langs,
resolution=512 # set resolution here or set `None` to use the original resolution
)
print(torch.softmax(image_logits, dim=1))
```
### OpenCLIP
This model is also integrated into OpenCLIP so that you can use it as any other model:
```
!pip install -U open_clip_torch
```
```
from open_clip import create_model_from_pretrained, get_tokenizer
from PIL import Image
import requests
import torch
model, transform = create_model_from_pretrained("nllb-clip-large-siglip", "mrl", device="cuda")
tokenizer = get_tokenizer("nllb-clip-large-siglip")
class_options = ["бабочка", "butterfly", "kat"]
class_langs = ["rus_Cyrl", "eng_Latn", "afr_Latn"]
text_inputs = []
for i in range(len(class_options)):
tokenizer.set_language(class_langs[i])
text_inputs.append(tokenizer(class_options[i]))
text_inputs = torch.stack(text_inputs).squeeze(1).to("cuda")
image_path = "https://huggingface.co/spaces/jjourney1125/swin2sr/resolve/main/samples/butterfly.jpg"
image = Image.open(requests.get(image_path, stream=True).raw)
image_inputs = transform(image).unsqueeze(0).to("cuda")
with torch.inference_mode():
logits_per_image, logits_per_text = model.get_logits(image_inputs, text_inputs)
print(logits_per_image.softmax(dim=-1))
```
## Acknowledgements
I thank [ML Collective](https://mlcollective.org/) for providing Google Cloud compute resources.
|