vintage-lavender619's picture
Model save
89ef884 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-landscape
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9313077939233818

swin-tiny-patch4-window7-224-finetuned-landscape

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2104
  • Accuracy: 0.9313

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.3423 0.9684 23 2.8014 0.2867
0.9369 1.9789 47 0.3964 0.8758
0.4031 2.9895 71 0.2710 0.9168
0.3021 4.0 95 0.2255 0.9260
0.248 4.9684 118 0.2175 0.9300
0.2465 5.9789 142 0.2207 0.9207
0.1814 6.9895 166 0.2162 0.9207
0.1806 8.0 190 0.1954 0.9392
0.1839 8.9684 213 0.1863 0.9353
0.1699 9.9789 237 0.1898 0.9366
0.1493 10.9895 261 0.1981 0.9313
0.128 12.0 285 0.2112 0.9300
0.1473 12.9684 308 0.2174 0.9353
0.1304 13.9789 332 0.2083 0.9353
0.12 14.9895 356 0.2050 0.9379
0.0987 16.0 380 0.2054 0.9339
0.1187 16.9684 403 0.2136 0.9353
0.1187 17.9789 427 0.2136 0.9326
0.1325 18.9895 451 0.2089 0.9313
0.1071 19.3684 460 0.2104 0.9313

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1