File size: 4,874 Bytes
55de14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
base_model: cardiffnlp/twitter-roberta-base-sentiment
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: x-robertta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# x-robertta

This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4082
- Accuracy: 0.8448
- F1: 0.8443
- Precision: 0.8439
- Recall: 0.8452

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.9847        | 0.0820 | 50   | 0.9092          | 0.6111   | 0.4914 | 0.4110    | 0.6129 |
| 0.8446        | 0.1639 | 100  | 1.2047          | 0.4515   | 0.4025 | 0.5378    | 0.4543 |
| 0.794         | 0.2459 | 150  | 0.6341          | 0.7058   | 0.6924 | 0.7562    | 0.7044 |
| 0.6176        | 0.3279 | 200  | 0.5220          | 0.8013   | 0.7958 | 0.7994    | 0.8019 |
| 0.6387        | 0.4098 | 250  | 0.5844          | 0.7790   | 0.7668 | 0.7832    | 0.7799 |
| 0.5845        | 0.4918 | 300  | 0.5524          | 0.7897   | 0.7834 | 0.7895    | 0.7906 |
| 0.5467        | 0.5738 | 350  | 0.5331          | 0.8099   | 0.8088 | 0.8089    | 0.8105 |
| 0.5181        | 0.6557 | 400  | 0.5041          | 0.8144   | 0.8118 | 0.8174    | 0.8143 |
| 0.4963        | 0.7377 | 450  | 0.4705          | 0.8228   | 0.8181 | 0.8219    | 0.8234 |
| 0.4871        | 0.8197 | 500  | 0.5085          | 0.8014   | 0.8004 | 0.8133    | 0.8010 |
| 0.5346        | 0.9016 | 550  | 0.4812          | 0.8298   | 0.8232 | 0.8338    | 0.8304 |
| 0.4424        | 0.9836 | 600  | 0.4802          | 0.8319   | 0.8271 | 0.8334    | 0.8323 |
| 0.4791        | 1.0656 | 650  | 0.4963          | 0.8111   | 0.8117 | 0.8149    | 0.8116 |
| 0.4785        | 1.1475 | 700  | 0.4522          | 0.8283   | 0.8279 | 0.8287    | 0.8284 |
| 0.4196        | 1.2295 | 750  | 0.5025          | 0.8124   | 0.8104 | 0.8183    | 0.8122 |
| 0.4284        | 1.3115 | 800  | 0.4800          | 0.8191   | 0.8189 | 0.8209    | 0.8196 |
| 0.4312        | 1.3934 | 850  | 0.6048          | 0.7608   | 0.7367 | 0.7859    | 0.7621 |
| 0.413         | 1.4754 | 900  | 0.4465          | 0.8412   | 0.8377 | 0.8409    | 0.8416 |
| 0.4239        | 1.5574 | 950  | 0.4960          | 0.8172   | 0.8172 | 0.8211    | 0.8178 |
| 0.4354        | 1.6393 | 1000 | 0.4348          | 0.8325   | 0.8328 | 0.8360    | 0.8324 |
| 0.4172        | 1.7213 | 1050 | 0.4525          | 0.8341   | 0.8298 | 0.8365    | 0.8344 |
| 0.4384        | 1.8033 | 1100 | 0.4169          | 0.8442   | 0.8416 | 0.8445    | 0.8444 |
| 0.4402        | 1.8852 | 1150 | 0.4124          | 0.8430   | 0.8405 | 0.8415    | 0.8433 |
| 0.4232        | 1.9672 | 1200 | 0.4187          | 0.8406   | 0.8388 | 0.8423    | 0.8407 |
| 0.3738        | 2.0492 | 1250 | 0.4367          | 0.8422   | 0.8413 | 0.8434    | 0.8422 |
| 0.373         | 2.1311 | 1300 | 0.4338          | 0.8415   | 0.8407 | 0.8434    | 0.8415 |
| 0.369         | 2.2131 | 1350 | 0.4468          | 0.8385   | 0.8395 | 0.8412    | 0.8387 |
| 0.3772        | 2.2951 | 1400 | 0.4141          | 0.8461   | 0.8452 | 0.8455    | 0.8462 |
| 0.3602        | 2.3770 | 1450 | 0.4495          | 0.8214   | 0.8235 | 0.8359    | 0.8211 |
| 0.3735        | 2.4590 | 1500 | 0.4055          | 0.8456   | 0.8449 | 0.8449    | 0.8458 |
| 0.3585        | 2.5410 | 1550 | 0.4115          | 0.8470   | 0.8450 | 0.8463    | 0.8472 |
| 0.3795        | 2.6230 | 1600 | 0.4318          | 0.8372   | 0.8364 | 0.8368    | 0.8377 |
| 0.356         | 2.7049 | 1650 | 0.4179          | 0.8434   | 0.8440 | 0.8446    | 0.8435 |
| 0.3554        | 2.7869 | 1700 | 0.4080          | 0.8476   | 0.8471 | 0.8473    | 0.8477 |
| 0.3729        | 2.8689 | 1750 | 0.4044          | 0.8491   | 0.8478 | 0.8479    | 0.8494 |
| 0.3578        | 2.9508 | 1800 | 0.4030          | 0.8482   | 0.8473 | 0.8474    | 0.8484 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Tokenizers 0.19.1