File size: 14,367 Bytes
8327472
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8df6e7a290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8df6e7a320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8df6e7a3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8df6e7a440>", "_build": "<function ActorCriticPolicy._build at 0x7f8df6e7a4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8df6e7a560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8df6e7a5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8df6e7a680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8df6e7a710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8df6e7a7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8df6e7a830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8df6ec0780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652163426.503864, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHOTDT5Iu6G61XZduwr6NTh7g5i7MYEDOQAAgD8AAIA/zayQuhdVsz/SAOW93fXgvhOJqDqafc88AAAAAAAAAACai7c9uBbkuVqu9rngF5e0iiyYuxQjEDkAAIA/AACAP035Tj0fhYI4dWBPuq931bTNSjC7oyZ4OQAAgD8AAIA/AGFkPRO8Wz8jDSM+r1apvrJXtTxiFo+9AAAAAAAAAABa/uc9e0aBukJaBDlXA/S1dyQ6u8J/c7gAAIA/AACAP8oNgb7npuk+3u8jPjSCYr7UFLS81TL/PAAAAAAAAAAApsMNPtc3JrtdeVA7f0AGuXBOpLz9FOW5AACAPwAAgD8zdF0+PJNPP52E8zv5uq6+ilGfPVX9P7sAAAAAAAAAAAAJID3DjWW6Xv9CPJr7OrVh8Sk7+YIqtAAAgD8AAIA/5qCYPVyrabq81jE67zAlNaP+jzhO9E+5AACAPwAAgD/AFzu+zpPDvP2kEzsfTJc5k3wuPnMDTLoAAIA/AACAP80xKj6Uneo7h5EMvXIYATtguoQ+MuxCvQAAgD8AAIA/5pi2PSkQWLpQj0K6BPahtI7LnbrWHmM5AACAPwAAgD9mcpu7w4lOuijpUrk3RL+z3gGctn1uczgAAIA/AACAP80HAr0pKBO6l2hFO217djdG3KM65GEkugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIS3UBL7P2Z0CUhpRSlIwBbJRN6AOMAXSUR0CXBxc94eLfdX2UKGgGaAloD0MIiJ6USQ05YUCUhpRSlGgVTegDaBZHQJcW3iQ1aW51fZQoaAZoCWgPQwg1Ymafx8lgQJSGlFKUaBVN6ANoFkdAlyUuxnnMdXV9lChoBmgJaA9DCBwo8E7+h3BAlIaUUpRoFU25A2gWR0CXJd8ejmCAdX2UKGgGaAloD0MIKhprf2d1ZUCUhpRSlGgVTegDaBZHQJcrJgZ0jkd1fZQoaAZoCWgPQwhfC3pvDE9kQJSGlFKUaBVN6ANoFkdAl0tEBS1ma3V9lChoBmgJaA9DCJDaxMl9rGZAlIaUUpRoFU3oA2gWR0CXTkEP1+RYdX2UKGgGaAloD0MIavrsgOvATkCUhpRSlGgVS+BoFkdAl1O3OjZcs3V9lChoBmgJaA9DCIo73uQ362NAlIaUUpRoFU3oA2gWR0CXVKtIClrNdX2UKGgGaAloD0MIUdzxJr/nZ0CUhpRSlGgVTegDaBZHQJdWQadc0Lt1fZQoaAZoCWgPQwiI2GDhpJhkQJSGlFKUaBVN6ANoFkdAl1cGJWNm2HV9lChoBmgJaA9DCLSPFfw2A2JAlIaUUpRoFU3oA2gWR0CXXlNB4UvgdX2UKGgGaAloD0MITvBN02eXZECUhpRSlGgVTegDaBZHQJdiuLEUCaJ1fZQoaAZoCWgPQwg66X3ja4lfQJSGlFKUaBVN6ANoFkdAl2MPEKmbb3V9lChoBmgJaA9DCAb3Ax4YHmdAlIaUUpRoFU3oA2gWR0CXY6c32mHhdX2UKGgGaAloD0MIa/KU1fS6YECUhpRSlGgVTegDaBZHQJdn3BsQ/X51fZQoaAZoCWgPQwj3PH/aqDFiQJSGlFKUaBVN6ANoFkdAl2fduHerMnV9lChoBmgJaA9DCBk9t9CVSGBAlIaUUpRoFU3oA2gWR0CXaT+Eh7mddX2UKGgGaAloD0MIBi/6CtJsIkCUhpRSlGgVS+VoFkdAl2yMPjGT93V9lChoBmgJaA9DCGRYxRsZ2GZAlIaUUpRoFU3oA2gWR0CXeL6jFhoedX2UKGgGaAloD0MIPbg7azfTYkCUhpRSlGgVTegDaBZHQJeH0G7jDKp1fZQoaAZoCWgPQwguA85SMkRnQJSGlFKUaBVN6ANoFkdAl46QV9F4LXV9lChoBmgJaA9DCF+VC5X/v2JAlIaUUpRoFU3oA2gWR0CXkI1gH/tIdX2UKGgGaAloD0MI7xzKUBWSYkCUhpRSlGgVTegDaBZHQJeyuFsYVIt1fZQoaAZoCWgPQwjbTIV4JDBiQJSGlFKUaBVN6ANoFkdAl7iDTfBN23V9lChoBmgJaA9DCOCdfHrsrWNAlIaUUpRoFU3oA2gWR0CXuY/2kBS2dX2UKGgGaAloD0MIc0pATML4XkCUhpRSlGgVTegDaBZHQJe7EK8cuJ11fZQoaAZoCWgPQwgROugSDg9pQJSGlFKUaBVN6ANoFkdAl7vU5EMLGHV9lChoBmgJaA9DCEzjF15Jei9AlIaUUpRoFUvDaBZHQJe9Kn0kGA11fZQoaAZoCWgPQwjiWu1hL4QtQJSGlFKUaBVLt2gWR0CXx95Ke05VdX2UKGgGaAloD0MIYFlpUor8ZECUhpRSlGgVTegDaBZHQJfH36Hj6vd1fZQoaAZoCWgPQwj/0MyT60piQJSGlFKUaBVN6ANoFkdAl8g77sOXmnV9lChoBmgJaA9DCCgpsACmpWdAlIaUUpRoFU3oA2gWR0CXyNDE3sHCdX2UKGgGaAloD0MI6E1FKow3Y0CUhpRSlGgVTegDaBZHQJfNFsk6cRV1fZQoaAZoCWgPQwiQniKHCMJiQJSGlFKUaBVN6ANoFkdAl80ZgTh5xHV9lChoBmgJaA9DCHqM8szLY2NAlIaUUpRoFU3oA2gWR0CXzpNIsiB5dX2UKGgGaAloD0MITRO2nwyGYUCUhpRSlGgVTegDaBZHQJfSKtozvZ11fZQoaAZoCWgPQwiNfjScMslFQJSGlFKUaBVL2mgWR0CX24br1M/RdX2UKGgGaAloD0MIklz+Q3rAYUCUhpRSlGgVTegDaBZHQJfe9BfKISF1fZQoaAZoCWgPQwjGNqloLDdkQJSGlFKUaBVN6ANoFkdAl+0fuLJjlXV9lChoBmgJaA9DCH8TChFwlDdAlIaUUpRoFUvEaBZHQJftsHKOktV1fZQoaAZoCWgPQwhhNCvbBzliQJSGlFKUaBVN6ANoFkdAl/Nf+XJHRXV9lChoBmgJaA9DCG3i5H6HcWJAlIaUUpRoFU3oA2gWR0CYFq238XN1dX2UKGgGaAloD0MIvTeGAGDvYkCUhpRSlGgVTegDaBZHQJgcM8kleGB1fZQoaAZoCWgPQwiUFi6rsCBkQJSGlFKUaBVN6ANoFkdAmB0qmTC+DnV9lChoBmgJaA9DCNwpHax/42JAlIaUUpRoFU3oA2gWR0CYHq9QGfPHdX2UKGgGaAloD0MIbECEuPJ3YUCUhpRSlGgVTegDaBZHQJggx4jbBXV1fZQoaAZoCWgPQwjPwMjLGvxhQJSGlFKUaBVN6ANoFkdAmCtQd8zAOHV9lChoBmgJaA9DCDbIJCNnr11AlIaUUpRoFU3oA2gWR0CYK1Gus90SdX2UKGgGaAloD0MIZ7RVSWSmXUCUhpRSlGgVTegDaBZHQJgrsG5c1O11fZQoaAZoCWgPQwjCo40jVixmQJSGlFKUaBVN6ANoFkdAmCw3V5KODXV9lChoBmgJaA9DCPjgtUubrGJAlIaUUpRoFU3oA2gWR0CYMC9Cu2ZzdX2UKGgGaAloD0MID+7O2u3vZkCUhpRSlGgVTegDaBZHQJgxkxrSE151fZQoaAZoCWgPQwjLorCLIgpkQJSGlFKUaBVN6ANoFkdAmDSp2ZAprnV9lChoBmgJaA9DCJjcKLLWKCdAlIaUUpRoFUvWaBZHQJg3lIz3yqd1fZQoaAZoCWgPQwhzEHS0qtVkQJSGlFKUaBVN6ANoFkdAmDzQzxgAqHV9lChoBmgJaA9DCNkiaTd6A2FAlIaUUpRoFU3oA2gWR0CYTeOdoWYXdX2UKGgGaAloD0MIKSFYVa+KY0CUhpRSlGgVTegDaBZHQJhObVpblil1fZQoaAZoCWgPQwjdYKjDCuZhQJSGlFKUaBVN6ANoFkdAmFP+8brC33V9lChoBmgJaA9DCBxAv+/fv2RAlIaUUpRoFU3oA2gWR0CYWQO7g88tdX2UKGgGaAloD0MIoRSt3AtrZECUhpRSlGgVTegDaBZHQJh8/sqril11fZQoaAZoCWgPQwiOklfnGDVkQJSGlFKUaBVN6ANoFkdAmH4KBVdX1nV9lChoBmgJaA9DCJ/KaU/JCWFAlIaUUpRoFU3oA2gWR0CYf6DOTq0MdX2UKGgGaAloD0MIEyf3OxRJYkCUhpRSlGgVTegDaBZHQJiB7Ot4iX91fZQoaAZoCWgPQwhTWn9LgLdmQJSGlFKUaBVN6ANoFkdAmI1YCQtBfXV9lChoBmgJaA9DCG+BBMUPS2NAlIaUUpRoFU3oA2gWR0CYjbwhnrY5dX2UKGgGaAloD0MI9G+X/To/Y0CUhpRSlGgVTegDaBZHQJiOWzru6Vd1fZQoaAZoCWgPQwiJfQIoxvBiQJSGlFKUaBVN6ANoFkdAmJLrBfrrxHV9lChoBmgJaA9DCAUWwJSB+mZAlIaUUpRoFU3oA2gWR0CYlHnwob4rdX2UKGgGaAloD0MIXXAGf78MY0CUhpRSlGgVTegDaBZHQJiYE7W/ag51fZQoaAZoCWgPQwhRobq5+ChiQJSGlFKUaBVN6ANoFkdAmJtBUBGQS3V9lChoBmgJaA9DCBR15h4SbjFAlIaUUpRoFUvmaBZHQJicktg8bJh1fZQoaAZoCWgPQwhHrptSXsViQJSGlFKUaBVN6ANoFkdAmKCXhbW3B3V9lChoBmgJaA9DCC7IluXrmitAlIaUUpRoFUvnaBZHQJixR63RXwN1fZQoaAZoCWgPQwinyveMxMFiQJSGlFKUaBVN6ANoFkdAmLGXv2GqP3V9lChoBmgJaA9DCI0o7Q0+kmVAlIaUUpRoFU3oA2gWR0CYsh/LDAJtdX2UKGgGaAloD0MIqn06HrOEYUCUhpRSlGgVTegDaBZHQJi3o6+36RB1fZQoaAZoCWgPQwjp76XwoORwQJSGlFKUaBVNKgNoFkdAmLmuLNwBHXV9lChoBmgJaA9DCGGMSBTaIWVAlIaUUpRoFU3oA2gWR0CYvF5N47iidX2UKGgGaAloD0MIlFD6QsgFMkCUhpRSlGgVS95oFkdAmN7HdweeWnV9lChoBmgJaA9DCFzoSgSqpy3AlIaUUpRoFUvaaBZHQJjfQDTz/ZN1fZQoaAZoCWgPQwgCKbFre/NlQJSGlFKUaBVN6ANoFkdAmN++NT987nV9lChoBmgJaA9DCD4ipkSSt2RAlIaUUpRoFU3oA2gWR0CY4JWo3rD7dX2UKGgGaAloD0MItJHrppTzYUCUhpRSlGgVTegDaBZHQJjh5MRHww11fZQoaAZoCWgPQwinA1lPrZI9QJSGlFKUaBVL0WgWR0CY7OG5+YtydX2UKGgGaAloD0MIv0hoy7lYPkCUhpRSlGgVS9NoFkdAmO3+vIOpbXV9lChoBmgJaA9DCJp9HqO8DmNAlIaUUpRoFU3oA2gWR0CY7nfra/RFdX2UKGgGaAloD0MIWB050pkxYUCUhpRSlGgVTegDaBZHQJjvblo11nx1fZQoaAZoCWgPQwhlqIqp9CxlQJSGlFKUaBVN6ANoFkdAmPPxqj8DS3V9lChoBmgJaA9DCOMW83NDiGZAlIaUUpRoFU3oA2gWR0CY9Xa5PM0QdX2UKGgGaAloD0MIDHkEN9KVYECUhpRSlGgVTegDaBZHQJj5NJ17pmp1fZQoaAZoCWgPQwi+TurLUs9mQJSGlFKUaBVN6ANoFkdAmPyv4yoGZHV9lChoBmgJaA9DCDcXf9sTWk5AlIaUUpRoFUvYaBZHQJj80D4gzP91fZQoaAZoCWgPQwjJyi+DscpkQJSGlFKUaBVN6ANoFkdAmP38dxQzlHV9lChoBmgJaA9DCD4kfO9vSCDAlIaUUpRoFUu9aBZHQJkAKV0Lc9J1fZQoaAZoCWgPQwhXeJeL+MdeQJSGlFKUaBVN6ANoFkdAmRLDFyaNM3V9lChoBmgJaA9DCK5FC9A2sWdAlIaUUpRoFU3oA2gWR0CZGUV2icoZdX2UKGgGaAloD0MIJo48ENk5YUCUhpRSlGgVTegDaBZHQJkbneIl+mZ1fZQoaAZoCWgPQwh9lBEXgJZmQJSGlFKUaBVN6ANoFkdAmR5uRxLkCHV9lChoBmgJaA9DCPIIbqRs6mNAlIaUUpRoFU3oA2gWR0CZItD9OymidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}