|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: token_fine_tunned_flipkart_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# token_fine_tunned_flipkart_2 |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3435 |
|
- Precision: 0.8797 |
|
- Recall: 0.9039 |
|
- F1: 0.8916 |
|
- Accuracy: 0.9061 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 109 | 0.5647 | 0.7398 | 0.8123 | 0.7744 | 0.8111 | |
|
| No log | 2.0 | 218 | 0.3863 | 0.8165 | 0.8751 | 0.8448 | 0.8716 | |
|
| No log | 3.0 | 327 | 0.3367 | 0.8599 | 0.8847 | 0.8721 | 0.8869 | |
|
| No log | 4.0 | 436 | 0.3266 | 0.8688 | 0.8911 | 0.8798 | 0.8977 | |
|
| 0.527 | 5.0 | 545 | 0.3508 | 0.8595 | 0.8898 | 0.8744 | 0.8909 | |
|
| 0.527 | 6.0 | 654 | 0.3410 | 0.8748 | 0.9045 | 0.8894 | 0.9009 | |
|
| 0.527 | 7.0 | 763 | 0.3431 | 0.8754 | 0.9045 | 0.8897 | 0.9049 | |
|
| 0.527 | 8.0 | 872 | 0.3435 | 0.8797 | 0.9039 | 0.8916 | 0.9061 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |
|
|