vinayak361
commited on
Commit
•
fbb2e84
1
Parent(s):
f58d59b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: token_fine_tunned_flipkart_2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# token_fine_tunned_flipkart_2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3435
|
23 |
+
- Precision: 0.8797
|
24 |
+
- Recall: 0.9039
|
25 |
+
- F1: 0.8916
|
26 |
+
- Accuracy: 0.9061
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 8
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 109 | 0.5647 | 0.7398 | 0.8123 | 0.7744 | 0.8111 |
|
58 |
+
| No log | 2.0 | 218 | 0.3863 | 0.8165 | 0.8751 | 0.8448 | 0.8716 |
|
59 |
+
| No log | 3.0 | 327 | 0.3367 | 0.8599 | 0.8847 | 0.8721 | 0.8869 |
|
60 |
+
| No log | 4.0 | 436 | 0.3266 | 0.8688 | 0.8911 | 0.8798 | 0.8977 |
|
61 |
+
| 0.527 | 5.0 | 545 | 0.3508 | 0.8595 | 0.8898 | 0.8744 | 0.8909 |
|
62 |
+
| 0.527 | 6.0 | 654 | 0.3410 | 0.8748 | 0.9045 | 0.8894 | 0.9009 |
|
63 |
+
| 0.527 | 7.0 | 763 | 0.3431 | 0.8754 | 0.9045 | 0.8897 | 0.9049 |
|
64 |
+
| 0.527 | 8.0 | 872 | 0.3435 | 0.8797 | 0.9039 | 0.8916 | 0.9061 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.19.2
|
70 |
+
- Pytorch 1.11.0+cu102
|
71 |
+
- Datasets 2.2.2
|
72 |
+
- Tokenizers 0.12.1
|